[1]
|
T. Acar, Quantitative $q$-Voronovskaya and $q$-Grüss–Voronovskaya-type results for $q$-Szász operators, Georgian Math. J., 23 (2016), 459-468.
doi: 10.1515/gmj-2016-0007.
|
[2]
|
A. M. Acu, H. Gonska and I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukranian Math. J., 63 (2011), 843-864.
doi: 10.1007/s11253-011-0548-2.
|
[3]
|
P. N. Agrawal, B. Baxhaku and R. Chauhan, Quantitative Voronovskaya- and Grüss-Voronovskaya-type theorems by the blending variant of Szász operators including Brenke-type polynomials, Turkish J. Math., 42 (2018), 1610-1629.
doi: 10.3906/mat-1708-1.
|
[4]
|
P. N. Agrawal, N. Bhardwaj and J. K. Singh, Approximation degree of bivariate Kantorovich Stancu operators, J. Nonlinear Sci. Appl., 14 (2021), 423-439.
doi: 10.22436/jnsa.014.06.05.
|
[5]
|
P. N. Agrawal and P. Gupta, $q$-Lupas Kantorovich operators based on Pólya distribution, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 64 (2018), 1-23.
doi: 10.1007/s11565-017-0291-1.
|
[6]
|
P. N. Agrawal, N. İspir and A. Kajla, GBS operators of Lupaş–Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.
doi: 10.1007/s00025-015-0507-6.
|
[7]
|
G. A. Anastassiou and S. G. Gal, Approximation theory: Moduli of Continuity and Global Smoothness Preservation, Springer Science & Business Media, Birkhäuser, Boston, 2012.
|
[8]
|
C. Badea, I. Badea and H. H. Gonska, A test function theorem and apporoximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53-64.
doi: 10.1017/S0004972700004494.
|
[9]
|
C. Badea and C. Cottin,, Korovkin-type theorems for generalized Boolean sum operators, in Approximation Theory (Kecskemét, 1990), Colloq. Math. Soc. János Bolyai, 58, North-Holland, Amsterdam, 1991, 51–68.
|
[10]
|
I. Badea, The modulus of continuity in the Bögel sense and some applications in approximation by a Bernšteĭn operator, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 18 (1973), 69-78.
|
[11]
|
D. Bărbosu, GBSoperators of Schurer-Stancu type, An. Univ. Craiova Ser. Mat. Inform., 30 (2003), 34-39.
|
[12]
|
D. Bărbosu, A.-M. Acu and C. V. Muraru, On certain GBS-Durrmeyer operators based on $q$-integers, Turkish J. Math., 41 (2017), 368-380.
|
[13]
|
S. Bernšteın, Démonstration du théoreme de Weierstrass fondée sur le calcul des probabilities, Comm. Soc. Math. Kharkov., 13 (1912), 1-2.
|
[14]
|
K. Bögel, Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veränderlichen, J. Reine Angew. Math., 170 (1934), 197-217.
doi: 10.1515/crll.1934.170.197.
|
[15]
|
K. Bögel, Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., 173 (1935), 5-30.
doi: 10.1515/crll.1935.173.5.
|
[16]
|
Q.-B. Cai and G. Zhou,, Blending type approximation by $GBS$ operators of bivariate tensor product of $\lambda$-Bernstein–Kantorovich type, J. Inequal. Appl., 2018 (2018), 11pp.
doi: 10.1186/s13660-018-1862-0.
|
[17]
|
J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63.
doi: 10.1524/anly.1988.8.12.47.
|
[18]
|
E. Deniz, Quantitative estimates for Jain-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 121-132.
doi: 10.1501/Commua1_0000000764.
|
[19]
|
Z. Ditzian and V. Totik,, Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4778-4.
|
[20]
|
E. Dobrescu and I. Matei,, The approximation by Bernšteĭn type polynomials of bidimensionally continuous functions., An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85–90.
|
[21]
|
P. Erdős and G. Tenenbaum, Sur les densités de certaines suites d'entiers, Proc. London Math. Soc.(3), 59 (1989), 417-438.
doi: 10.1112/plms/s3-59.3.417.
|
[22]
|
M. D. Farcaş, About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.
|
[23]
|
M. D. Farcaş, About approximation of B-continuous functions of three variables by GBS operators of Bernstein type on a tetrahedron, Acta Univ. Apulensis Math. Inform., 16 (2008), 93-102.
|
[24]
|
Z. Finta,, Remark on Voronovskaja theorem for $q$-Bernstein operators, Stud. Univ. Babeş-Bolyai Math., 56 (2011), 335–339.
|
[25]
|
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
doi: 10.1524/anly.1985.5.4.301.
|
[26]
|
J. A. Fridy and M. K. Khan, Tauberian theorems via statistical convergence, J. Math. Anal. Appl., 228 (1998), 73-95.
doi: 10.1006/jmaa.1998.6118.
|
[27]
|
J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993), 497-504.
doi: 10.1006/jmaa.1993.1082.
|
[28]
|
A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.
doi: 10.1016/j.amc.2010.01.099.
|
[29]
|
A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky. Mountain J. Math., 32 (2002), 129-138.
doi: 10.1216/rmjm/1030539612.
|
[30]
|
S. G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables., Jaen J. Approx., 7 (2015), 97-122.
|
[31]
|
G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{{b - a}}\int\limits_a^b {f\left(x \right)} g\left(x \right)dx - \frac{1}{{\left({b - a} \right)^2 }}\int\limits_a^b {f\left(x \right)dx} \int\limits_a^b g \left(x \right)dx$, Math. Z., 39 (1935), 215-226.
doi: 10.1007/BF01201355.
|
[32]
|
P. Gupta and P. N. Agrawal, Quantitative Voronovskaja and Grüss Voronovskaja-type theorems for operators of Kantorovich type involving multiple Appell polynomials, Iran J. Sci. Technol. Trans. A Sci., 43 (2019), 1679-1687.
doi: 10.1007/s40995-018-0613-x.
|
[33]
|
M. Heilmann, $L_p$-saturation of some modified Bernstein operators, J. Approx. Theory., 54 (1988), 260-273.
doi: 10.1016/0021-9045(88)90003-2.
|
[34]
|
G. İçöz, A Kantorovich variant of a new type Bernstein–Stancu polynomials, Appl. Math. Comput., 218 (2012), 8552-8560.
doi: 10.1016/j.amc.2012.02.017.
|
[35]
|
A. Kajla, S. Deshwal and P. N. Agrawal, Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain–Durrmeyer operators of blending type, Anal. Math. Phys., 9 (2019), 1241-1263.
doi: 10.1007/s13324-018-0229-5.
|
[36]
|
A. Kajla and D. Miclăuş, Blending type approximation by GBS operators of generalized Bernstein-Durrmeyer type, Results Math., 73 (2018), 21pp.
doi: 10.1007/s00025-018-0773-1.
|
[37]
|
L. Kantorovich,, Sur certains développements suivant les polynômes de la forme de S., Bernstein, I, II, CR Acad. URSS., 563 (1930).
|
[38]
|
E. Kolk,, The statistical convergence in Banach spaces., Tartu Ül. Toimetised, 928 (1991), 41–52.
|
[39]
|
D. Miclăuş, On the GBS Bernstein-Stancu's type operators, Creat. Math. Inform, 22 (2013), 73-80.
doi: 10.37193/CMI.2013.01.09.
|
[40]
|
H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1811-1819.
doi: 10.1090/S0002-9947-1995-1260176-6.
|
[41]
|
S. A. Mohiuddine, T. Acar and M. A. Alghamdi,, Genuine modified Bernstein–Durrmeyer operators, J. Inequal. Appl., 2018 (2018), 13pp.
doi: 10.1186/s13660-018-1693-z.
|
[42]
|
S. A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749-7759.
doi: 10.1002/mma.4559.
|
[43]
|
T. Neer and P. N. Agrawal,, Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials, J. Inequal. Appl., 2017 (2017), 20pp.
doi: 10.1186/s13660-017-1520-y.
|
[44]
|
S. Pehlivan and M. A. Mamedov, Statistical cluster points and turnpike, Optimization, 48 (2000), 93-106.
doi: 10.1080/02331930008844495.
|
[45]
|
O. T. Pop, Approximation of $B$-continuous and $B$-differentiable functions by GBS operators defined by finite sum, Facta Univ. Ser. Math. Inform., 22 (2007), 33-41.
|
[46]
|
O. T. Pop,, Approximation of $B$-continuous and $B$-differentiable functions by GBS operators defined by infinite sum, JIPAM. J. Inequal. Pure Appl. Math., 10 (2009), 8pp.
|
[47]
|
O. T. Pop and D. Bărbosu, GBS operators of Durrmeyer-Stancu type, Miskolc Math. Notes, 9 (2008), 53-60.
doi: 10.18514/MMN.2008.133.
|
[48]
|
O. T. Pop and M. Farcaş,, Approximation of $B$-continuous and {$B$-differentiable} functions by GBS operators of Bernstein bivariate polynomials, JIPAM. J. Inequal. Pure Appl. Math, 7 (2006), 9pp.
|
[49]
|
S. Rahman, M. Mursaleen and A. Khan,, A Kantorovich variant of Lupaş–Stancu operators based on Pólya distribution with error estimation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 26pp.
doi: 10.1007/s13398-020-00804-8.
|
[50]
|
R. Ruchi, B. Baxhaku and P. N. Agrawal, GBS operators of bivariate Bernstein-Durrmeyer–type on a triangle, Math. Methods Appl. Sci., 41 (2018), 2673-2683.
doi: 10.1002/mma.4771.
|
[51]
|
T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
|
[52]
|
I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math Monthly, 66 (1959), 361-775.
doi: 10.1080/00029890.1959.11989303.
|
[53]
|
D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl, 13 (1968), 1173-1194.
|
[54]
|
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math, 2 (1951), 73-74.
|
[55]
|
J. Tariboon and S. K. Ntouyas,, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 13pp.
doi: 10.1186/1029-242X-2014-121.
|
[56]
|
V. Totik, Problems and solutions concerning Kantorovich operators, J. Approx. Theory, 37 (1983), 51-68.
doi: 10.1016/0021-9045(83)90116-8.
|
[57]
|
G. Ulusoy and T. Acar, $q$-Voronovskaya type theorems for $q$-Baskakov operators, Math. Methods Appl. Sci., 39 (2016), 3391-3401.
doi: 10.1002/mma.3784.
|
[58]
|
A. Zygmund, Trigonometric Series. Vols. Ⅰ, Ⅱ, 3$^{rd}$ edition, Cambridge University Press, Cambridge, 2002.
|