In the present paper, we introduce a new type of Bernstein-Durrmeyer operators preserving linear functions in movable interval. The approximation rate of the new operators for continuous functions and Voronovskaja's asymptotic estimate are obtained.
Citation: |
[1] | T. Acar, A. Aral and V. Gupta, On approximation properties of a new type of Bernstein-Durrmeyer operators, Math. Slovaca, 65 (2015), 1107-1122. doi: 10.1515/ms-2015-0076. |
[2] | A. M. Acu and P. N. Agrawal, Better approximation of functions by genuine Bernstein-Durrmeyer type operators, J. Math. Inequal., 12 (2018), 975-987. |
[3] | Q. B. Cai, Ü. D. Kantar and B. Çekim, Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators, Appl. Math. J. Chinese Univ. Ser. B, 35 (2020), 468-478. doi: 10.1007/s11766-020-3918-y. |
[4] | Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-018-1653-7. |
[5] | W. Chen, On the Modified Durrmeyer-Bernstein Operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhenzhou, China, 1987. |
[6] | F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cambridge Monographs on Applied and Computational Mathematics, 24. Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511618796. |
[7] | Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York, 1987. doi: 10.1007/978-1-4612-4778-4. |
[8] | L. X. Dong and D. S. Yu, Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators, J. Inequal. Appl., 2017 (2017), Paper No. 28, 13 pp. doi: 10.1186/s13660-016-1291-x. |
[9] | A. D. Gadjiev and A. M. Ghorbanalizaeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901. doi: 10.1016/j.amc.2010.01.099. |
[10] | H. Gonska, D. Kacsó and I. Raşa, On genuine Bernstein-Durrmeyer operators, Result. Math., 50 (2007), 213-225. doi: 10.1007/s00025-007-0242-8. |
[11] | H. Gonska, D. Kacsó and I. Raşa, The genuine Bernstein-Durrmeyer operators revisited, Result. Math., 62 (2012), 295-310. doi: 10.1007/s00025-012-0287-1. |
[12] | H. Gonska and R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Cze. Math. J., 60 (2010), 783-799. doi: 10.1007/s10587-010-0049-8. |
[13] | H. Gonska, I. Raşa and E. D. Stănilă, The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators, Medit. J. Math., 11 (2014), 561-576. doi: 10.1007/s00009-013-0347-0. |
[14] | T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operators, In Bl. Sendov et al. (eds), Constructive Theory of Functions Verna 1987, Publ. House Bulgar. Acad. Sci., Sofia, (1988), 166–173. |
[15] | T. N. T. Goodman and A. Sharma, A Bernstein type operators on the simplex, Math. Balkanica (N. S.), 5 (1991), 129-145. |
[16] | X. Guo, L. X. Li and Q. Wu, Modeling interactive components by coordinate kernel polynomial models, Mathematical Foundations of Computing., 3 (2020), 263-277. doi: 10.3934/mfc.2020010. |
[17] | Z. C. Guo, D. H. Xiang, X. Guo and D. X. Zhou, Thresholded spectral algorithms for sparse approximations, Anal. Appl., 15 (2017), 433-455. doi: 10.1142/S0219530517500026. |
[18] | V. Gupta and P. Maheshwari, Bezier variant of a new Durrmeyer type operators, Riv. Mat. Univ. Parma, 7 (2003), 9-21. |
[19] | V. Gupta and H. M. Srivastava, A general family of the Srivastava-Gupta operators preserving linear functions, Eur. J. Pure Appl. Math., 11 (2018), 575-579. doi: 10.29020/nybg.ejpam.v11i3.3314. |
[20] | G. İçöz, A kantorovich variant of a new type Bernstein-Stancu polynomails, Appl. Math. Comput., 218 (2012), 8552-8560. doi: 10.1016/j.amc.2012.02.017. |
[21] | B. Jiang and D. S. Yu, On Approximation by Bernstein-Stancu polynomials in movable compact disks, Result. Math., 72 (2017), 1535-1543. doi: 10.1007/s00025-017-0669-5. |
[22] | B. Jiang and D. S. Yu, Approximation by Durrmeyer type Bernstein-Stancu polynomials in movable compact disks, Result. Math., 74 (2019), Paper No. 28, 12 pp. doi: 10.1007/s00025-018-0952-0. |
[23] | B. Jiang and D. S. Yu, On approximation by Stancu type Bernstein-Schurer polynomials in compact disks, Result. Math., 72 (2017), 1623-1638. doi: 10.1007/s00025-017-0740-2. |
[24] | H. S. Jung, N. Deo and M. Dhamija, Pointwise approximation by Bernstein type operators in mobile interval, Appl. Math. Comput., 244 (2014), 683-694. doi: 10.1016/j.amc.2014.07.034. |
[25] | U. D. Kantar and G. Ergelen, A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators, Gazi. Univ. J. Sci., 32 (2019), 1228-1236. |
[26] | B. Z. Li and D. X. Zhou, Analysis of approximation by linear operators on variable $L^{P(\cdot)}_{\rho}$ spaces and applications in learning theory, Abstr. Appl. Anal., 2014 (2014), Art. ID 454375, 10 pp. doi: 10.1155/2014/454375. |
[27] | N. I. Mahmudova and V. Gupta, Approximation by genuine Durrmeyer-Stancu polynomials in compact disks, Math. Comput. Modelling, 55 (2012), 278-285. doi: 10.1016/j.mcm.2011.06.018. |
[28] | P. E. Parvanov and B. D. Popov, The limit case of Bernstein's operators with Jacobi weights, Math. Balk. (N. S.), 8 (1994), 165-177. |
[29] | T. Sauer, The genuine Bernstein-Durrmeyer operator on a simplex, Result. Math., 26 (1994), 99-130. doi: 10.1007/BF03322291. |
[30] | H. M. Srivastava, Z. Finta and V. Gupta, Direct results for a certain family of summation-integral type operators, Appl. Math. Comput., 190 (2007), 449-457. doi: 10.1016/j.amc.2007.01.039. |
[31] | H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling, 37 (2003), 1307-1315. doi: 10.1016/S0895-7177(03)90042-2. |
[32] | H. M. Srivastava and V. Gupta, Rate of convergence for Bézier variant of the Bleimann-Butzer-Hahn operators, Appl. Math. Letter, 18 (2005), 849-857. doi: 10.1016/j.aml.2004.08.014. |
[33] | H. M. Srivastava, G. Îçöz and B. Çekim, Approximation properties of an extended family of the Szász-Mirakjan Beta-type operators, Axiom, 8 (2019), Article ID 111, 1–13. doi: 10.3390/axioms8040111. |
[34] | H. M. Srivastava, F. Özarslan and S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter $\lambda$, Symmetry, 11 (2019), Article ID 316, 1–22. |
[35] | H. M. Srivastava and X. M. Zeng, Approximation by means of the Szász-Bézier integral operators, Int. J. Pure Appl. Math., 14 (2004), 283-294. |
[36] | F. Taşdelen, G. Başcanbaz-Tunca and A. Erençin, On a new type Bernstein-Stancu operators, Fasci. Math., 48 (2012), 119-128. |
[37] | F. F. Wang and D. S. Yu, On approximation of Bernstein-Durrmeyer-Type operators in movable interval, Filomat, 35 (2021), 1191-1203. doi: 10.2298/FIL2104191W. |
[38] | M. L. Wang, D. S. Yu and P. Zhou, On the approximation by operators of Bernstein-Stancu type, Appl. Math. Comput., 246 (2014), 79-87. doi: 10.1016/j.amc.2014.08.015. |
[39] | S. Waldron, A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122 (2003), 141-150. doi: 10.1016/S0021-9045(03)00041-8. |
[40] | D. X. Zhou, Deep distributed convolutional neural networks: Universality, Anal. Appl., 16 (2018), 895-919. doi: 10.1142/S0219530518500124. |
[41] | D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344. doi: 10.1007/s10444-004-7206-2. |