[1]
|
T. Abdeljawad and F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal, 2012 (2012), 13pp.
doi: 10.1155/2012/406757.
|
[2]
|
T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 12pp.
doi: 10.1155/2013/406910.
|
[3]
|
T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$-sums, Chaos Solitons Fractals, 116 (2018), 146-156.
doi: 10.1016/j.chaos.2018.09.022.
|
[4]
|
T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Difference Equ., 2013 (2013), 16pp.
doi: 10.1186/1687-1847-2013-36.
|
[5]
|
T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Solitons Fractals, 126 (2019), 315-324.
doi: 10.1016/j.chaos.2019.06.012.
|
[6]
|
T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602-1611.
doi: 10.1016/j.camwa.2011.03.036.
|
[7]
|
T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Difference Equ., 2016 (2016), 18pp.
doi: 10.1186/s13662-016-0949-5.
|
[8]
|
T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11-27.
doi: 10.1016/S0034-4877(17)30059-9.
|
[9]
|
T. Abdeljawad and D. Baleanu, Fractional differences and integration by parts, J Comput. Anal. Appl., 13 (2011), 574-582.
|
[10]
|
T. Abdeljawad, D. Baleanu, F. Jarad and R. P. Agarwal, Fractional sums and differences with binomial coefficients, Discrete Dyn. Nat. Soc., 2013 (2013), 6pp.
doi: 10.1155/2013/104173.
|
[11]
|
T. Abdeljawad, S. Banerjee and G. -C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik, 218 (2020).
doi: 10.1016/j. ijleo. 2019.163698.
|
[12]
|
T. Abdeljawad, F. Jarad and J. Alzabut, Fractional proportional differences with memory, Eur. Phys. J. Special Topics, 226 (2017), 3333-3354.
doi: 10.1140/epjst/e2018-00053-5.
|
[13]
|
J. O. Alzabut and T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl., 5 (2014), 177-187.
|
[14]
|
G. A. Anastassiou, Discrete fractional caculus and inequalities, preprint, 2009, arXiv: 0911.3370.
|
[15]
|
G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling, 51 (2010), 562-571.
doi: 10.1016/j.mcm.2009.11.006.
|
[16]
|
G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Modelling, 52 (2010), 556-566.
doi: 10.1016/j.mcm.2010.03.055.
|
[17]
|
G. A. Anastassiou, Right nabla discrete fractional calculus, Int. J. Difference Equ., 6 (2011), 91-104.
|
[18]
|
D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109-137.
|
[19]
|
F. M. Atıcı and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ., 2 (2007), 165-176.
|
[20]
|
F. M. Atıcı and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., (2009), 1–12.
doi: 10.14232/ejqtde. 2009.4.3.
|
[21]
|
Z. Bai and R. Xu, The asymptotic behavior of solutions for a class of nonlinear fractional difference equations with damping term, Discrete Dyn. Nat. Soc., 2018 (2018), 11pp.
doi: 10.1155/2018/5232147.
|
[22]
|
P. Baliarsingh, On a fractional difference operator, Alex. Eng. J., 55 (2016), 1811-1816.
doi: 10.1016/j.aej.2016.03.037.
|
[23]
|
P. Baliarsingh and L. Nayak, A note on fractional difference operators, Alex. Eng. J., 57 (2018), 1051-1054.
doi: 10.1016/j.aej.2017.02.022.
|
[24]
|
N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres, Discrete-time fractional variational problems, Signal Process., 91 (2011), 513-524.
doi: 10.1016/j.sigpro.2010.05.001.
|
[25]
|
N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst., 29 (2011), 417-437.
doi: 10.3934/dcds.2011.29.417.
|
[26]
|
N. R. O. Bastos and D. F. M. Torres, Combined delta-nabla sum operator in discrete fractional calculus, Commun. Frac. Calc., 1 (2010), 41-47.
|
[27]
|
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2003.
doi: 10.1007/978-0-8176-8230-9.
|
[28]
|
S. Chapman, On non-integral orders of summability of series and integrals, Proc. London Math. Soc. (2), 9 (1911), 369-409.
doi: 10.1112/plms/s2-9.1.369.
|
[29]
|
F. Chen, X. Luo and Y. Zhou, Existence results for nonlinear fractional difference equation, Adv. Difference Equ., 2011 (2011), 12pp.
doi: 10.1155/2011/713201.
|
[30]
|
G. V. S. R. Deekshitulu and J. J. Mohan, Fractional difference inequalities, Commun. Appl. Anal., 14 (2010), 89-97.
|
[31]
|
G. V. S. R. Deekshitulu and J. J. Mohan, Some new fractional difference inequalities, in Mathematical Modelling and Scientific Computation, Commun. Comput. Inf. Sci., 283, Springer, Heidelberg, 2012, 403–412.
doi: 10.1007/978-3-642-28926-2_44.
|
[32]
|
G. V. S. R. Deekshitulu and J. J. Mohan, Some new fractional difference inequalities of Gronwall-Bellman type, Math. Sci., 6 (2012), 9pp.
|
[33]
|
E. C. de Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integrals, Math. Probl. Eng., 2014 (2014), 6pp.
doi: 10.1155/2014/238459.
|
[34]
|
J. B. Diaz and T. J. Osler, Differences of fractional order, Math. Comp., 28 (1974), 185-202.
doi: 10.1090/S0025-5718-1974-0346352-5.
|
[35]
|
R. K. Ghaziani, W. Govaerts and C. Sonck, Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlinear. Anal. Real World Appl., 13 (2012), 1451-1465.
doi: 10.1016/j.nonrwa.2011.11.009.
|
[36]
|
H. L. Gray and N. F. Zhang, On a new definition of the fractional difference, Math. Comp., 50 (1988), 513-529.
doi: 10.1090/S0025-5718-1988-0929549-2.
|
[37]
|
S. S. Haider and M. ur Rehman, On substantial fractional difference operator, Adv. Difference Equ., 2020 (2020), 18pp.
doi: 10.1186/s13662-020-02594-0.
|
[38]
|
S. S. Haider, M. ur Rehman and T. Abdejawad, On Hilfer fractional difference operator, Adv. Difference Equ., 2020 (2020), 20pp.
doi: 10.1186/s13662-020-02576-2.
|
[39]
|
R. Hirota, Lectures on difference equations, Science-sha, Japanese, 2000.
|
[40]
|
M. Holm, The Theory of Discrete Fractional Calculus Development and Application, Ph. D thesis, University of Nebraska in Lincoln, 2011.
|
[41]
|
J. R. M. Hosking, Fractional differencing, Biometrika, 68 (1981), 165-176.
doi: 10.1093/biomet/68.1.165.
|
[42]
|
S. C. Jun, A note on fractional differences based on a linear combination between forward and backward differences, Comput. Math. Appl., 41 (2001), 373-378.
doi: 10.1016/S0898-1221(00)00280-7.
|
[43]
|
T. Kaczorek, Positive 1D and 2D Systems, Communications and Control Engineering, Springer, London, 2002.
doi: 10.1007/978-1-4471-0221-2.
|
[44]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
|
[45]
|
B. Kuttner, On differences of fractional order, Proc. London Math. Soc. (3), 7 (1957), 453-466.
doi: 10.1112/plms/s3-7.1.453.
|
[46]
|
W. N. Li, Oscillation results for certain forced fractional difference equations with damping term, Adv. Difference Equ., 2016 (2016), 9pp.
doi: 10.1186/s13662-016-0798-2.
|
[47]
|
K. S. Miller and B. Ross, Fractional difference calculus, in Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989, 139–152.
|
[48]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
|
[49]
|
P. O. Mohammeda, T. Abdeljawadb and F. K. Hamasalh, Discrete Prabhakar fractional difference and sum operators, Chaos Solitons Fractals, 150 (2021), 11pp.
doi: 10.1016/j. chaos. 2021.111182.
|
[50]
|
A. Mouaouine, A. Boukhouima, K. Hattaf and N. Yousfi, A fractional order SIR epidemic model with nonlinear incidence rate, Adv. Difference Equ., 2018 (2018), 9pp.
doi: 10.1186/s13662-018-1613-z.
|
[51]
|
D. Mozyrska, Multiparameter fractional difference linear control systems, Discrete Dyn. Nat. Soc., 2014 (2014), 8pp.
doi: 10.1155/2014/183782.
|
[52]
|
D. Mozyrska and E. Girejko, Overview of fractional $h$-difference operators, in Advances in Harmonic Analysis and Operator Theory, Oper. Theory Adv. Appl., 229, Birkhäuser/Springer Basel AG, Basel, 2013, 253–268.
doi: 10.1007/978-3-0348-0516-2_14.
|
[53]
|
D. Mozyrska, E. Girejko and M. Wyrwas, Comparison of $h$-difference fractional operators, in Advances in the Theory and Applications of Non-Integer Order Systems, Lect. Notes Electr. Eng., 257, Springer, Cham, 2013, 191–197.
doi: 10.1007/978-3-319-00933-9_17.
|
[54]
|
A. Nagai, An integrable mapping with fractional difference, J. Phy. Soc. Japan, 72 (2003), 2181-2183.
doi: 10.1143/JPSJ.72.2181.
|
[55]
|
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
|
[56]
|
F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phys. . 293 (2015), 14–28.
doi: 10.1016/j. jcp. 2014.04.024.
|
[57]
|
M. R. Sagayaraj, A. G. M. Selvam and M. P. Loganathan, On the oscillation of nonlinear fractional difference equations, Math. Aeterna, 4 (2014), 91-99.
|
[58]
|
G. Sales Teodoro, J. A. Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.
doi: 10.1016/j.jcp.2019.03.008.
|
[59]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Frational Integrals and Derivatives. Theory and Applications, Science and Technica, Minsk, 1987.
|
[60]
|
A. G. M. Selvam, M. R. Sagayaraj and M. P. Loganathan, Oscillatory behavior of a class of fractional difference equations with damping, Inter. J. Appl. Math. Research, 3 (2014), 220-224.
doi: 10.14419/ijamr.v3i3.2624.
|
[61]
|
I. Suwan, S. Owies and T. Abdeljawad, Fractional $h$-differences with exponential kernels and their monotonicity properties, Math. Methods Appl. Sci., 44 (2021), 8432-8446.
doi: 10.1002/mma.6213.
|
[62]
|
I. Suwan, S. Owies, M. Abussa and T. Abdeljawad, Monotonicity analysis of fractional proportional differences, Discrete Dyn. Nat. Soc., 2020 (2020), 11pp.
doi: 10.1155/2020/4867927.
|
[63]
|
T. Yalçin Uzun, Oscillatory behavior of nonlinear Hilfer fractional difference equations, Adv. Difference Equ., 2021 (2021), 11pp.
doi: 10.1186/s13662-021-03343-7.
|