$n$ | Degree of convergence of $f$ |
100 | 1.2575829 |
1000 | 1.1507909 |
10000 | 1.1082121 |
50000 | 1.0911295 |
100000 | 1.0854078 |
500000 | 1.0746045 |
1000000 | 1.0707630 |
. | . |
. | . |
$\infty$ | 1 |
In this paper, we obtain the results on the degree of convergence of a function of Fourier series in generalized Zygmund space using deferred Cesàro-generalized Nörlund $ (D^{h}_{g}N^{a,b}) $ transformation. Important corollaries are deduced from our main results. Some applications are also given in support of our main results.
Citation: |
Table 1. Degree of convergence of $f$ for different $n$
$n$ | Degree of convergence of $f$ |
100 | 1.2575829 |
1000 | 1.1507909 |
10000 | 1.1082121 |
50000 | 1.0911295 |
100000 | 1.0854078 |
500000 | 1.0746045 |
1000000 | 1.0707630 |
. | . |
. | . |
$\infty$ | 1 |
Table 2. Degree of convergence of $f$ for different $n$
$n$ | Degree of convergence of $f$ |
100 | 3.8368 |
1000 | 3.5991 |
10000 | 3.4794 |
50000 | 3.4274 |
100000 | 3.4096 |
500000 | 3.3759 |
1000000 | 3.3639 |
10000000 | 3.3315 |
100000000 | 3.3073 |
. | . |
. | . |
$\infty$ | 3.1416 |
[1] |
R. P. Agnew, On deferred Cesàro means, Ann. Math., 33 (1932), 413-421.
doi: 10.2307/1968524.![]() ![]() ![]() |
[2] |
C. K. Chui, An Introduction to Wavelets, Wavelet Analysis and its Applications, 1. Academic
Press, Inc., Boston, MA, 1992.
![]() ![]() |
[3] |
G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.
![]() ![]() |
[4] |
S. Lal, Approximation of functions belonging to the generalized Lipschitz class by $C_{1}N_{p}$ summability method of Fourier series, Appl. Math. Comput., 209 (2009), 346-350.
doi: 10.1016/j.amc.2008.12.051.![]() ![]() ![]() |
[5] |
S. Lal and A. Mishra, The method of summation $(E, 1)(N, p_{n})$ and trigonometric approximation of function in generalized Hölder metric, J. Indian Math. Soc., 80 (2013), 87-98.
![]() ![]() |
[6] |
B. A. London, Degree of Approximation of Hölder Continuous Functions, Thesis (Ph.D.)-University of Central Florida, 2008.
![]() ![]() |
[7] |
Det Kgl. Mollerup, Danske videnskabernes selska, Math.-Fys. Medd., 3 (1920).
![]() |
[8] |
H. K. Nigam, Degree of approximation of a function belonging to weighted $(L_{r}, \xi(t))$ class by $(C, 1)(E, q)$ means, Tamkang J. Math., 42 (2011), 31-37.
doi: 10.5556/j.tkjm.42.2011.514.![]() ![]() ![]() |
[9] |
H. K. Nigam and Md. Hadish, Approximation of a function in Hölder class using double Karamata $(K^ {\lambda, \mu})$ method, Eur. J. Pure Appl. Math., 13 (2020), 567-578.
doi: 10.29020/nybg.ejpam.v13i3.3663.![]() ![]() ![]() |
[10] |
H. K. Nigam and Md. Hadish, Best approximation of functions in generalized Hölder class, J. Inequal. Appl., (2018), Paper No. 276, 15 pp.
doi: 10.1186/s13660-018-1864-y.![]() ![]() ![]() |
[11] |
H. K. Nigam and Md. Hadish, Trigonometric approximation of functions by Hausdorff-Matrix product operators, Nonlinear Functional Analysis and Applications, 24 (2019), 675-689.
![]() |
[12] |
H. K. Nigam and S. Rani, Approximation of function in generalized Hölder class, Eur. J. Pure Appl. Math., 13 (2020), 351-368.
doi: 10.29020/nybg.ejpam.v13i2.3667.![]() ![]() ![]() |
[13] |
E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, Oxford, 1939.
![]() ![]() |
[14] |
O. Töeplitz, Uberallagemeine lineara, Mittelbil. Dunger. P.M.F., 22 (2013), 113-119.
![]() |
[15] |
A. Zygmund, Trigonometric Series, 3rd rev. ed., Cambridge University Press, Cambridge, 2002.
![]() |
Degree of convergence of function
Degree of convergence of function