We determine the necessary and sufficient convolution conditions for the starlike functions on the open unit disk and related to some geometric aspects of the function $ \tanh z $. We also determine sharp bounds on second and third order Hermitian-Toeplitz determinants for such functions. Further, we compute estimates on some initial coefficients and the Hankel determinants of third and fourth order. In addition, using the concept of Briot-Bouquet type differential subordination, we establish a subordination inclusion involving Bernardi integral operator.
Citation: |
[1] |
T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015), 233-239.
doi: 10.1016/j.amc.2015.04.060.![]() ![]() ![]() |
[2] |
T. Acar, A. Aral and I. Raşa, Iterated Boolean sums of Bernstein type operators, Numer. Funct. Anal. Optim., 41 (2020), 1515-1527.
doi: 10.1080/01630563.2020.1777160.![]() ![]() ![]() |
[3] |
R. M. Ali, V. Ravichandran and N. Seenivasagan, On Bernardi's integral operator and the Briot-Bouquet differential subordination, J. Math. Anal. Appl., 324 (2006), 663-668.
doi: 10.1016/j.jmaa.2005.12.033.![]() ![]() ![]() |
[4] |
K. O. Babalola, On ${H}_3(1)$ Hankel determinant for some classes of univalent functions, Ineq. Thoery and Appl., 6 (2010), 1-7.
![]() |
[5] |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
doi: 10.1090/S0002-9947-1969-0232920-2.![]() ![]() ![]() |
[6] |
N. Bohra, S. Kumar and V. Ravichandran, Some special differential subordinations, Hacet. J. Math. Stat., 48 (2019), 1017-1034.
doi: 10.15672/hjms.2018.570.![]() ![]() ![]() |
[7] |
N. Bohra, S. Kumar and V. Ravichandran, Applications of Briot-Bouquet differential subordination, J. Class. Anal., 18 (2021), 17-28.
doi: 10.7153/jca-2021-18-02.![]() ![]() ![]() |
[8] |
T. Bulboacǎ, M. K. Aouf and R. M. El-Ashwah, Convolution properties for subclasses of meromorphic univalent functions of complex order, Filomat, 26 (2012), 153-163.
doi: 10.2298/FIL1201153B.![]() ![]() ![]() |
[9] |
N. E. Cho, S. Kumar and V. Kumar, Hermitian-Toeplitz and Hankel determinants for certain starlike functions, Asian-Eur. J. Math., 15 (2022), Paper No. 2250042, 16 pp.
doi: 10.1142/S1793557122500425.![]() ![]() ![]() |
[10] |
K. Cudna, O. S. Kwon, A. Lecko, Y. J. Sim and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$, Bol. Soc. Mat. Mex., 26 (2020), 361-375.
doi: 10.1007/s40590-019-00271-1.![]() ![]() ![]() |
[11] |
P. L. Duren, Univalent Functions, 259, Springer, New York, 1983.
![]() ![]() |
[12] |
P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, General Inequalities 3. International Series of Numerical Mathematics, 64 (1983), 339-348.
![]() |
[13] |
R. M. El-Ashwah, Some convolution and inclusion properties for subclasses of bounded univalent functions of complex order, Thai J. Math., 12 (2014), 373-384.
![]() ![]() |
[14] |
V. Gupta, A generalized class of integral operators, Carpathian J. Math., 36 (2020), 423-431.
doi: 10.37193/CJM.2020.03.10.![]() ![]() ![]() |
[15] |
V. Gupta, A. Aral and C.-V. Muraru, Modification of exponential type operators preserving exponential functions connected with $x^3$, Mediterr. J. Math., 18 (2021), Paper No. 222, 14 pp.
doi: 10.1007/s00009-021-01851-0.![]() ![]() ![]() |
[16] |
D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
doi: 10.1090/S0002-9939-1975-0374403-3.![]() ![]() ![]() |
[17] |
W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math., 28 (1973), 297-326.
doi: 10.4064/ap-28-3-297-326.![]() ![]() ![]() |
[18] |
P. Jastrzȩbski, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 166.
doi: 10.1007/s13398-020-00895-3.![]() ![]() ![]() |
[19] |
B. Kowalczyk, A. Lecko and Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), 435-445.
doi: 10.1017/S0004972717001125.![]() ![]() ![]() |
[20] |
D. Kucerovsky, K. Mousavand and A. Sarraf, On some properties of Toeplitz matrices, Cogent Math., 3 (2016), Art. ID 1154705, 12 pp.
doi: 10.1080/23311835.2016.1154705.![]() ![]() ![]() |
[21] |
S. Kumar and A. Cetinkaya, Coefficient inequalities for certain starlike and convex functions, Hacet. J. Math. Stat., $\texttt{51}$ (2022), 156-171.
doi: 10.15672/hujms.778148.![]() ![]() ![]() |
[22] |
S. Kumar and V. Kumar, Sharp estimates on Hermitian–Toeplitz Determinant for Sakaguchi classes, Commun. Korean Math. Soc., https://ckms.kms.or.kr/.
![]() |
[23] |
S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40 (2016), 199-212.
![]() ![]() |
[24] |
S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory, 12 (2018), 1179-1191.
doi: 10.1007/s11785-017-0690-4.![]() ![]() ![]() |
[25] |
V. Kumar, N. E. Cho, V. Ravichandran and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053-1064.
doi: 10.1515/ms-2017-0289.![]() ![]() ![]() |
[26] |
V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex., 27 (2021), Paper No. 55.
doi: 10.1007/s40590-021-00362-y.![]() ![]() ![]() |
[27] |
A. Lecko, Y. J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory, 13 (2019), 2231-2238.
doi: 10.1007/s11785-018-0819-0.![]() ![]() ![]() |
[28] |
R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $\mathcal{ P}$, Proc. Amer. Math. Soc., 87 (1983), 251-257.
doi: 10.2307/2043698.![]() ![]() ![]() |
[29] |
S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet diferential equations, J. Differ Equ., 56 (1985), 297-309.
doi: 10.1016/0022-0396(85)90082-8.![]() ![]() ![]() |
[30] |
R. Parvatham, On Bernardi's integral operators of certain classes of functions, Kyungpook Math. J., 42 (2002), 437-441.
![]() ![]() |
[31] |
Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41 (1966), 111-122.
doi: 10.1112/jlms/s1-41.1.111.![]() ![]() ![]() |
[32] |
V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20 (2004), 31-37.
![]() ![]() |
[33] |
V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505-510.
doi: 10.1016/j.crma.2015.03.003.![]() ![]() ![]() |
[34] |
K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif and S. Arjika, A study of sharp coefficient bounds for a new subfamily of starlike functions, J. Inequal. Appl., 2021, Paper No. 194, 20 pp.
doi: 10.1186/s13660-021-02729-1.![]() ![]() ![]() |
[35] |
K. Ullah, S. Zainab, M. Arif, M. Darus and M. Shutaywi, Radius problems for starlike functions associated with the tan hyperbolic function, J. Funct. Spaces, 2021, Art. ID 9967640, 15 pp.
doi: 10.1155/2021/9967640.![]() ![]() ![]() |
[36] |
Z.-G. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel determinants for a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 45 (2022), 323-359.
doi: 10.1007/s40840-021-01195-8.![]() ![]() ![]() |
[37] |
K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), 577-598.
doi: 10.1007/s10208-015-9254-z.![]() ![]() ![]() |
Image of unit disk