This paper aims to present the concept of $ I $ & $ I^* $ convergence and $ s_p $- $ I $ convergence along with the $ I $ Cauchy criterion in $ \mathcal{L} $-fuzzy normed space (in short $ \mathcal{L} $-FNS). Characterizations of these notions in $ \mathcal{L} $-FNS have been shown in the paper. This paper also presents how these notions are related to each other in $ \mathcal{L} $-FNS. We have also given certain important counter-examples to establish the relationships between them. In addition, we introduce the $ \mathcal{L} $ -fuzzy limit points and $ \mathcal{L} $-fuzzy cluster points of a sequence in $ \mathcal{L} $-FNS.
| Citation: |
| [1] |
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets Syst., 20 (1986), 87-96.
doi: 10.1016/S0165-0114(86)80034-3.
|
| [2] |
G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25. American Mathematical Society, Providence, RI, 1979.
|
| [3] |
K. Cho and C. Lee, Some results on convergences in fuzzy metric spaces and fuzzy normed spaces, Commun. Korean Math. Soc., 35 (2020), 185-199.
doi: 10.4134/CKMS.c180460.
|
| [4] |
G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, Notes IFS, 8 (2002), 1-10.
|
| [5] |
G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets Syst., 133 (2003), 227-35.
doi: 10.1016/S0165-0114(02)00127-6.
|
| [6] |
G. Deschrijver, D. O'Regan, R. Saadati and S. M. Vaezpour, L-Fuzzy Euclidean normed spaces and compactness, Chaos Solit. Fractals, 42 (2009), 40-45.
doi: 10.1016/j.chaos.2008.10.026.
|
| [7] |
H. Efe, Some results in $\mathcal{L}$-fuzzy metric spaces, Carpathian J. Math., 24 (2008), 37-44.
|
| [8] |
A. Esi and B. Hazarika, Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an Orlicz function, Afr. Mat., 25 (2014), 331-343.
doi: 10.1007/s13370-012-0117-3.
|
| [9] |
A. Esi and B. Hazarika, $\lambda$-ideal convergence in intuitionistic fuzzy 2-normed linear space, J. Intell. Fuzzy Syst., 24 (2013), 725-732.
doi: 10.3233/IFS-2012-0592.
|
| [10] |
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
doi: 10.1016/0165-0114(94)90162-7.
|
| [11] |
A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365-368.
doi: 10.1016/S0165-0114(96)00207-2.
|
| [12] |
J. A. Goguen, $\mathcal{L}$-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
doi: 10.1016/0022-247X(67)90189-8.
|
| [13] |
M. Gürdal, A. Şhiner and A. A. Ahmet, Approximation theory in 2-Banach spaces, Nonlinear Anal. Theory Methods Appl., 71 (2009), 1654-1661.
doi: 10.1016/j.na.2009.01.030.
|
| [14] |
B. Hazarika, V. Kumar and B. Lafuerza-Guillén, Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat, 27 (2013), 811-820.
doi: 10.2298/FIL1305811H.
|
| [15] |
B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afr. Mat., 25 (2013), 987-999.
doi: 10.1007/s13370-013-0168-0.
|
| [16] |
B. Hazarika and V. Kumar, Fuzzy real valued Ⅰ-convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Systems, 26 (2014), 2323-2332.
doi: 10.3233/IFS-130905.
|
| [17] |
B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat, 26 (2012), 1273-1282.
doi: 10.2298/FIL1206273H.
|
| [18] |
B. Hazarika, Generalized ideal convergence in probabilistic normed spaces, J. Class. Anal., 2 (2013), 177-186.
doi: 10.7153/jca-03-16.
|
| [19] |
S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solit. Fractals, 35 (2008), 763-769.
doi: 10.1016/j.chaos.2006.05.046.
|
| [20] |
S. Karakus and K. Demirci, Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, J. Comput. Anal. Appl., 10 (2008), 377-389.
|
| [21] |
V. A. Khan, I. A. Khan and M. Ahmad, $s_p $-Closedness and $s_p $-convergent sequences in IFMS and its generalization to $\mathcal{L }$-fuzzy metric space, Soft Comput., 25 (2021), 14029-14037.
|
| [22] |
V. A. Khan, I. A. Khan and M. Ahmad, A new type of difference $I $-convergent sequence in IF$n$NS, Yugosl. J. Oper., 33 (2023), 1-15.
doi: 10.2298/YJOR210318022K.
|
| [23] |
P. Kostyrko, M. Macaj and T. Ŝalát, Statistical convergence and Ⅰ-convergence, Real Anal. Exch., (1999).
|
| [24] |
P. Kostyrko, T. Šalát and W. Wilczyński, Ⅰ-convergence, Real Anal. Exch., 26 (2000), 669-685.
|
| [25] |
M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2011), 49-62.
doi: 10.2478/s12175-011-0071-9.
|
| [26] |
M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. with Appl., 59 (2010), 603-611.
doi: 10.1016/j.camwa.2009.11.002.
|
| [27] |
M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solit. Fractals, 41 (2009), 2414-2421.
doi: 10.1016/j.chaos.2008.09.018.
|
| [28] |
S. NÄÄan, Fuzzy euclidean normed spaces for data mining applications, Int. J. Comput. Commun., 10 (2015), 70-77.
|
| [29] |
S. Orhan, F. Dirik and K. Demirci, Statistical convergence on probabilistic modular spaces, Stud. Univ. Babes-Bolyai Math., 59 (2014), 317-329.
|
| [30] |
J. H. Park, Intuitionistic fuzzy metric space, Chaos Solit. Fractals, 22 (2004), 1039-1046.
doi: 10.1016/j.chaos.2004.02.051.
|
| [31] |
P. Ren, Z. Xu and J. Kacprzyk, Group decisions with intuitionistic fuzzy sets, Handbook of Group Decis. Negot., (2021), 977-995.
doi: 10.1007/978-3-030-49629-6_43.
|
| [32] |
R. Saadati and J. H. Park, On the intutionistic fuzzy topological spaces, Chaos Solit. Fractals, 27 (2006), 331-344.
doi: 10.1016/j.chaos.2005.03.019.
|
| [33] |
R. Saadati, A. Razani and H. Adibi, A Common fixed point theorem in L-fuzzy metric spaces, Chaos Solit. Fractals, 33 (2007), 358-363.
doi: 10.1016/j.chaos.2006.01.023.
|
| [34] |
R. Saadati, On the $\mathcal{L}$-fuzzy topological spaces, Chaos Solit. Fractals, 37 (2008), 1419-1426.
doi: 10.1016/j.chaos.2006.10.033.
|
| [35] |
R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solit. Fractals, 38 (2008), 36-47.
doi: 10.1016/j.chaos.2006.11.008.
|
| [36] |
R. Saadati, Notes to the paper "Fixed points in intuitionistic fuzzy metric spaces" and its generalization to L-fuzzy metric spaces, Chaos Solit. Fractals, 35 (2008), 176-180.
doi: 10.1016/j.chaos.2006.05.005.
|
| [37] |
R. Saadati and C. Park, Non-Archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 60 (2010), 2488-2496.
doi: 10.1016/j.camwa.2010.08.055.
|
| [38] |
T. Šalát, B. C. Tripathy and M. Ziman, On some properties of Ⅰ-convergence, Tatra Mt. Math. Publ., 28 (2004), 274-286.
|
| [39] |
E. Savaş and M. Gürdal, Ⅰ-statistical convergence in probabilistic normed spaces, Univ. Politehnica Bucharest Sci. Bull., 77 (2015), 195-204.
|
| [40] |
E. Savas and M. Gurdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Scienceasia, 41 (2015), 289-294.
|
| [41] |
Q. Sun, J. Wu, F. Chiclana, H. Fujita and E. Herrera-Viedma, A dynamic feedback mechanism with attitudinal consensus threshold for minimum adjustment cost in group decision making, IEEE Trans. Fuzzy Syst., 30 (2022), 1287-1301.
doi: 10.1109/TFUZZ.2021.3057705.
|
| [42] |
A. Umar and R. N. Saraswat, Novel generalized divergence measure for intuitionistic fuzzy sets and its applications in medical diagnosis and pattern recognition, Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy, (2022), 191-202.
doi: 10.1007/978-981-16-5952-2_17.
|
| [43] |
J. Wu, Q. Sun, H. Fujita and F. Chiclana, An attitudinal consensus degree to control the feedback mechanism in group decision making with different adjustment cost, Knowl. Based Syst., 164 (2019), 265-273.
doi: 10.1016/j.knosys.2018.10.042.
|
| [44] |
R. Yapalı and U. Gürdal, Pringsheim and statistical convergence for double sequences on L-fuzzy normed space, AIMS math., 6 (2021), 13726-13733.
doi: 10.3934/math.2021796.
|
| [45] |
L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|