In this work, we analyze the Fibonacci difference matrix and use it to develop new sequence spaces in the neutrosophic normed spaces (NNS). This study also includes a detailed analysis of several important properties of these spaces, including their linearity property, first countability and Hausdorffness.
| Citation: |
| [1] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
doi: 10.1016/S0165-0114(86)80034-3.
|
| [2] |
T. Bera and N. Mahapatra, Neutrosophic soft normed linear spaces, Infinite Study, (2018).
|
| [3] |
T. Bera and N. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Information and Engineering, 9 (2017), 299-324.
|
| [4] |
M. Candan and E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics, 3 (2015).
|
| [5] |
A. Das and B. Hazarika, Some properties of generalized Fibonacci difference bounded and p-absolutely convergent sequences, Bol. Soc. Parana. Mat., 36 (2018), 37–50, arXiv: 1604.00182.
doi: 10.5269/bspm.v36i1.30960.
|
| [6] |
A. Das and B. Hazarika, Matrix transformation of Fibonacci band matrix on generalized bv-space and its dual spaces, Bol. Soc. Parana. Mat., 36 (2018), 41-52.
doi: 10.5269/bspm.v36i3.32010.
|
| [7] |
M. A. Erceg, Metric spaces in fuzzy set theory, Journal of Mathematical Analysis and Applications, 69 (1979), 205-230.
doi: 10.1016/0022-247X(79)90189-6.
|
| [8] |
H. Fast, Sur la convergence statistique, Colloquium Mathematicae, 2 (1951), 241-244.
doi: 10.4064/cm-2-3-4-241-244.
|
| [9] |
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
doi: 10.1016/0165-0114(94)90162-7.
|
| [10] |
E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities And Applications, 2013 (2013), 1-15.
doi: 10.1186/1029-242X-2013-38.
|
| [11] |
E. Kara and M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra, 64 (2016), 2208-2223.
doi: 10.1080/03081087.2016.1145626.
|
| [12] |
V. Khan, M. Khan and M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets and Systems, 42 (2021), 15.
|
| [13] |
V. Khan, R. Rababah, K. Alshlool, S. Abdullah and A. Ahmad, On ideal convergence Fibonacci difference sequence spaces, Advances in Difference Equations, 2018 (2018), Paper No. 199, 14 pp.
doi: 10.1186/s13662-018-1639-2.
|
| [14] |
Ö. Kişi, Ideal convergence of sequences in neutrosophic normed spaces, Journal of Intelligent & Fuzzy Systems, 41 (2021), 2581-2590.
|
| [15] |
M. Kirişci and N. Şimşek, Neutrosophic metric spaces, Mathematical Sciences, 14 (2020), 241-248.
doi: 10.1007/s40096-020-00335-8.
|
| [16] |
M. Mursaleen and Q. Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fractals, 42 (2009), 224-234.
doi: 10.1016/j.chaos.2008.11.006.
|
| [17] |
H. QHF, SteinhausX Sur la convergence ordinaire et la convergence asymptotiqueF golloqF w thF 2@ IWSIAD UQ, (URF).
|
| [18] |
R. Saadati and J. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331-344.
doi: 10.1016/j.chaos.2005.03.019.
|
| [19] |
T. Šalát, B. Tripathy and M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., 28 (2004), 274-286.
|
| [20] |
T. Šalát, B. Tripathy and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math., 17 (2005), 45-54.
|
| [21] |
F. Smarandache, A generalization of the intuitionistic fuzzy set, International Journal of Pure And Applied Mathematics, 24 (2005), 287-297.
|
| [22] |
B. Tripathy and B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Mathematicae Applicatae Sinica, English Series, 27 (2011), 149-154.
doi: 10.1007/s10255-011-0048-z.
|
| [23] |
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|