In this paper, we study the second order Hermitian-Toeplitz determinant for the functions belonging to certain subclasses of univalent functions defined in the open unit disk in the Argand plane. In the demonstration of the proofs, we apply some coefficients inequalities for functions with positive real part due to Libera and Zlotkiewicz [12].
| Citation: |
| [1] |
R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26 (2003), 63-71.
|
| [2] |
K. Cudna, O. S. Kwon, A. Lecko, Y. J. Sim and B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$, Bol. Soc. Mat. Mex., 26 (2020), 361-375.
doi: 10.1007/s40590-019-00271-1.
|
| [3] |
R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math., 8 (1977), 864-872.
|
| [4] |
P. L. Duren, Univalent Functions, 259, Springer, New York, 1983.
|
| [5] |
D. Girela, Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn. Math., 25 (2000), 337-350.
|
| [6] |
G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329 (2007), 922-934.
doi: 10.1016/j.jmaa.2006.07.020.
|
| [7] |
K. Khatter, V. Ravichandran and S. S. Kumar, Estimates for initial coefficients of certain starlike functions with respect to symmetric points, in Applied Analysis in Biological and Physical Sciences, Springer Proc. Math. Stat., Springer, New Delhi, 186 (2016), 385-395.
doi: 10.1007/978-81-322-3640-5_24.
|
| [8] |
B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim and B. Śmiarowska, The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), 3143–3158.
doi: 10.1007/s40840-019-00859-w.
|
| [9] |
D. Kucerovsky, K. Mousavand and A. Sarraf, On some properties of Toeplitz matrices, Cogent Math, 3 (2016), Art. ID 1154705, 12 pp.
|
| [10] |
S. Kumar and V. Kumar, Sharp estimates on Hermitian–Toeplitz Determinant for Sakaguchi classes, Commun. Korean Math. Soc., 37 (2022), 1041-1053.
|
| [11] |
D. Kumar, V. Kumar and L. N. Das, Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions, Appl. Math., 68 (2023), 289-304.
|
| [12] |
R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$, Proc. Amer. Math. Soc., 87 (1983), 251-257.
doi: 10.1090/S0002-9939-1983-0681830-8.
|
| [13] |
M. Obradović and N. Tuneski, Hermitian Toeplitz determinants for the class S of univalent functions, Armen. J. Math., 13 (2021), Paper No. 4, 10 pp.
doi: 10.52737/18291163-2021.13.4-1-10.
|
| [14] |
S. Ponnusamy, N. L. Sharma and K. J. Wirths, Logarithmic coefficients of the inverse of univalent functions, Results Math, 73 (2018), Paper No. 160, 20 pp.
doi: 10.1007/s00025-018-0921-7.
|
| [15] |
P. Rai, A. C¸etinkaya and S. Kumar, Starlike functions associated with $\tanh z$ and Bernardi integral operator, Mathematical Foundations of Computing, 6 (2023), 573-585.
doi: 10.3934/mfc.2022032.
|
| [16] |
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75.
doi: 10.2969/jmsj/01110072.
|