Advanced Search
Article Contents
Article Contents

A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction

Abstract Related Papers Cited by
  • We study the isothermal Euler equations with friction and consider non-stationary solutions locally around a stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For the corresponding initial-boundary value problem we prove the existence of a continuously differentiable solution and present a method of boundary feedback stabilization. We introduce a Lyapunov function which is a weighted and squared $H^1$-norm of the difference between the non-stationary and the stationary state. We develop boundary feedback conditions which guarantee that the Lyapunov function and the $H^1$-norm of the difference between the non-stationary and the stationary state decay exponentially with time. This allows us also to prove exponential estimates for the $C^0$- and $C^1$-norm.
    Mathematics Subject Classification: 76N25, 35L50, 93C20.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization," Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia, 2006.


    M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.


    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.


    N. Bedjaoui, E. Weyer and G. Bastin, Methods for the localization of a leak in open water channels, Netw. Heterog. Media, 4 (2009), 189-210.doi: 10.3934/nhm.2009.4.189.


    J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines, Research Report available at Centre de recherche INRIA Saclay, January 7, 2009.


    R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.doi: 10.1137/080716372.


    J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.doi: 10.1109/TAC.2006.887903.


    M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.doi: 10.3934/nhm.2010.5.691.


    M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.


    M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203.doi: 10.1093/imamci/dnq007.


    M. Gugat and M. DickTime-delayed boundary feedback stabilization of the isothermal Euler equations with friction, submitted.


    M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17 (2011), 28-51.doi: 10.1051/cocv/2009035.


    M. Gugat and M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314.doi: 10.3934/nhm.2010.5.299.


    M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.


    M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 733-750.doi: doi:10.3934/nhm.2007.2.733.


    T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems," American Institute of Mathematical Sciences, Springfield, 2010.


    T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257.doi: 10.3934/dcds.2010.28.243.


    S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.doi: 10.3934/dcdss.2009.2.559.


    A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.


    A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal transient models, Technical Report available at Warsaw University of Technology, 1998.


    A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51.doi: 10.1016/S1385-8947(00)00194-7.


    M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.doi: 10.1016/j.cam.2006.04.018.


    M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups," Birkhäuser, Basel - Boston - Berlin, 2009.doi: 10.1007/978-3-7643-8994-9.


    J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks, SIAM J. Control Optim., 48 (2009), 2771-2797.doi: 10.1137/080733590.


    Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chin. Ann. Math., 27B (2006), 643-656.doi: 10.1007/s11401-005-0520-2.

  • 加载中

Article Metrics

HTML views() PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint