• Previous Article
    Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces
  • NACO Home
  • This Issue
  • Next Article
    A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction
2011, 1(2): 245-260. doi: 10.3934/naco.2011.1.245

Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces

1. 

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Received  December 2010 Revised  March 2011 Published  June 2011

We study a turnpike property of approximate solutions of a discrete-time control system with a compact metric space of states. In our recent work we prove this turnpike property and show that it is stable under perturbations of an objective function. In the present paper we improve this turnpike result by showing that it also holds for those solutions defined on a finite interval (domain) which are approximately optimal on all subintervals of the domain that have a fixed length which does not depend on the length of the whole domain.
Citation: Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245
References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I , Physica D, 8 (1983), 381-422. doi: doi:10.1016/0167-2789(83)90233-6.

[2]

J. Blot, Infinite-horizon Pontryagin principles without invertibility, J. Nonlinear Convex Anal., 10 (2009), 177-189.

[3]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl., 106 (2000), 411-419. doi: doi:10.1023/A:1004611816252.

[4]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC, 39 (2003), 1007-1010. doi: doi:10.1016/S0005-1098(03)00060-8.

[5]

D. Gale, On optimal development in a multi-sector economy, Review of Economic Studies, 34 (1967), 1-18. doi: doi:10.2307/2296567.

[6]

A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. and Opt., 13 (1985), 19-43. doi: doi:10.1007/BF01442197.

[7]

A. Leizarowitz, Tracking nonperiodic trajectories with the overtaking criterion, Appl. Math. and Opt., 14 (1986), 155-171. doi: doi:10.1007/BF01442233.

[8]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal., 106 (1989), 161-194. doi: doi:10.1007/BF00251430.

[9]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl, 340 (2008), 498-510. doi: doi:10.1016/j.jmaa.2007.08.008.

[10]

V. L. Makarov and A. M. Rubinov, "Mathematical Theory of Economic Dynamics and Equilibria,'' Springer-Verlag, New York, 1977.

[11]

M. A. Mamedov and S. Pehlivan, Statistical convergence of optimal paths, Math. Japon., 52 (2000), 51-55.

[12]

M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems, J. Math. Anal. Appl., 256 (2001), 686-693. doi: doi:10.1006/jmaa.2000.7061.

[13]

L. W. McKenzie, Turnpike theory, Econometrica 44 (1976), 841-866. doi: doi:10.2307/1911532.

[14]

B. Mordukhovich, Minimax design for a class of distributed parameter systems, Automat. Remote Control, 50 (1990), 1333-1340.

[15]

B. Mordukhovich and I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations, in "Optimal Control, Stabilization and Nonsmooth Analysis,'' Lecture Notes Control Inform. Sci. Springer, 2004, 121-132.

[16]

J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincare, Analyse Nonlineare, 3 (1986), 229-272.

[17]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems, Control Cybernet. 37 (2008), 451-468.

[18]

A. M. Rubinov, Economic dynamics, J. Soviet Math., 26 (1984), 1975-2012. doi: doi:10.1007/BF01084444.

[19]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486-496.

[20]

A. J. Zaslavski, Optimal programs on infinite horizon 1, SIAM Journal on Control and Optimization, 33 (1995), 1643-1660. doi: doi:10.1137/S036301299325726X.

[21]

A. J. Zaslavski, Optimal programs on infinite horizon 2, SIAM Journal on Control and Optimization, 33 (1995), 1661-1686. doi: doi:10.1137/S0363012993257271.

[22]

A. J. Zaslavski, "Turnpike Properties in the Calculus of Variations and Optimal Control,'' Springer, New York, 2006.

[23]

A. J. Zaslavski, Turnpike results for a discrete-time optimal control system arising in economic dynamics, Nonlinear Analysis, 67 (2007), 2024-2049. doi: doi:10.1016/j.na.2006.08.029.

[24]

A. J. Zaslavski, Two turnpike results for a discrete-time optimal control system, Nonlinear Analysis, 71 (2009), 902-909. doi: doi:10.1016/j.na.2008.12.053.

[25]

A. J .Zaslavski, Stability of a turnpike phenomenon for a discrete-time optimal control system, J. Optim. Theory Appl., 145 (2010), 597-612. doi: doi:10.1007/s10957-010-9677-2.

show all references

References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I , Physica D, 8 (1983), 381-422. doi: doi:10.1016/0167-2789(83)90233-6.

[2]

J. Blot, Infinite-horizon Pontryagin principles without invertibility, J. Nonlinear Convex Anal., 10 (2009), 177-189.

[3]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions, J. Optim. Theory Appl., 106 (2000), 411-419. doi: doi:10.1023/A:1004611816252.

[4]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC, 39 (2003), 1007-1010. doi: doi:10.1016/S0005-1098(03)00060-8.

[5]

D. Gale, On optimal development in a multi-sector economy, Review of Economic Studies, 34 (1967), 1-18. doi: doi:10.2307/2296567.

[6]

A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. and Opt., 13 (1985), 19-43. doi: doi:10.1007/BF01442197.

[7]

A. Leizarowitz, Tracking nonperiodic trajectories with the overtaking criterion, Appl. Math. and Opt., 14 (1986), 155-171. doi: doi:10.1007/BF01442233.

[8]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal., 106 (1989), 161-194. doi: doi:10.1007/BF00251430.

[9]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl, 340 (2008), 498-510. doi: doi:10.1016/j.jmaa.2007.08.008.

[10]

V. L. Makarov and A. M. Rubinov, "Mathematical Theory of Economic Dynamics and Equilibria,'' Springer-Verlag, New York, 1977.

[11]

M. A. Mamedov and S. Pehlivan, Statistical convergence of optimal paths, Math. Japon., 52 (2000), 51-55.

[12]

M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems, J. Math. Anal. Appl., 256 (2001), 686-693. doi: doi:10.1006/jmaa.2000.7061.

[13]

L. W. McKenzie, Turnpike theory, Econometrica 44 (1976), 841-866. doi: doi:10.2307/1911532.

[14]

B. Mordukhovich, Minimax design for a class of distributed parameter systems, Automat. Remote Control, 50 (1990), 1333-1340.

[15]

B. Mordukhovich and I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations, in "Optimal Control, Stabilization and Nonsmooth Analysis,'' Lecture Notes Control Inform. Sci. Springer, 2004, 121-132.

[16]

J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincare, Analyse Nonlineare, 3 (1986), 229-272.

[17]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems, Control Cybernet. 37 (2008), 451-468.

[18]

A. M. Rubinov, Economic dynamics, J. Soviet Math., 26 (1984), 1975-2012. doi: doi:10.1007/BF01084444.

[19]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486-496.

[20]

A. J. Zaslavski, Optimal programs on infinite horizon 1, SIAM Journal on Control and Optimization, 33 (1995), 1643-1660. doi: doi:10.1137/S036301299325726X.

[21]

A. J. Zaslavski, Optimal programs on infinite horizon 2, SIAM Journal on Control and Optimization, 33 (1995), 1661-1686. doi: doi:10.1137/S0363012993257271.

[22]

A. J. Zaslavski, "Turnpike Properties in the Calculus of Variations and Optimal Control,'' Springer, New York, 2006.

[23]

A. J. Zaslavski, Turnpike results for a discrete-time optimal control system arising in economic dynamics, Nonlinear Analysis, 67 (2007), 2024-2049. doi: doi:10.1016/j.na.2006.08.029.

[24]

A. J. Zaslavski, Two turnpike results for a discrete-time optimal control system, Nonlinear Analysis, 71 (2009), 902-909. doi: doi:10.1016/j.na.2008.12.053.

[25]

A. J .Zaslavski, Stability of a turnpike phenomenon for a discrete-time optimal control system, J. Optim. Theory Appl., 145 (2010), 597-612. doi: doi:10.1007/s10957-010-9677-2.

[1]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[2]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[3]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[4]

Senda Ounaies, Jean-Marc Bonnisseau, Souhail Chebbi, Halil Mete Soner. Merton problem in an infinite horizon and a discrete time with frictions. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1323-1331. doi: 10.3934/jimo.2016.12.1323

[5]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[6]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[7]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial and Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[8]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192

[9]

Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389

[10]

Valery Y. Glizer, Oleg Kelis. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 211-235. doi: 10.3934/naco.2018013

[11]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[12]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control and Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[13]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[14]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial and Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[15]

Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128

[16]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial and Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[17]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[18]

Nobusumi Sagara. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1219-1232. doi: 10.3934/dcdss.2018069

[19]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[20]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1893-1906. doi: 10.3934/cpaa.2021051

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]