• Previous Article
    A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction
  • NACO Home
  • This Issue
  • Next Article
    Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces
2011, 1(2): 245-260. doi: 10.3934/naco.2011.1.245

Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces

1. 

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Received  December 2010 Revised  March 2011 Published  June 2011

We study a turnpike property of approximate solutions of a discrete-time control system with a compact metric space of states. In our recent work we prove this turnpike property and show that it is stable under perturbations of an objective function. In the present paper we improve this turnpike result by showing that it also holds for those solutions defined on a finite interval (domain) which are approximately optimal on all subintervals of the domain that have a fixed length which does not depend on the length of the whole domain.
Citation: Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245
References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I ,, Physica D, 8 (1983), 381. doi: doi:10.1016/0167-2789(83)90233-6. Google Scholar

[2]

J. Blot, Infinite-horizon Pontryagin principles without invertibility,, J. Nonlinear Convex Anal., 10 (2009), 177. Google Scholar

[3]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions,, J. Optim. Theory Appl., 106 (2000), 411. doi: doi:10.1023/A:1004611816252. Google Scholar

[4]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems,, Automatica J. IFAC, 39 (2003), 1007. doi: doi:10.1016/S0005-1098(03)00060-8. Google Scholar

[5]

D. Gale, On optimal development in a multi-sector economy, , Review of Economic Studies, 34 (1967), 1. doi: doi:10.2307/2296567. Google Scholar

[6]

A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost,, Appl. Math. and Opt., 13 (1985), 19. doi: doi:10.1007/BF01442197. Google Scholar

[7]

A. Leizarowitz, Tracking nonperiodic trajectories with the overtaking criterion,, Appl. Math. and Opt., 14 (1986), 155. doi: doi:10.1007/BF01442233. Google Scholar

[8]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, , Arch. Rational Mech. Anal., 106 (1989), 161. doi: doi:10.1007/BF00251430. Google Scholar

[9]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem,, J. Math. Anal. Appl, 340 (2008), 498. doi: doi:10.1016/j.jmaa.2007.08.008. Google Scholar

[10]

V. L. Makarov and A. M. Rubinov, "Mathematical Theory of Economic Dynamics and Equilibria,'', Springer-Verlag, (1977). Google Scholar

[11]

M. A. Mamedov and S. Pehlivan, Statistical convergence of optimal paths,, Math. Japon., 52 (2000), 51. Google Scholar

[12]

M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems,, J. Math. Anal. Appl., 256 (2001), 686. doi: doi:10.1006/jmaa.2000.7061. Google Scholar

[13]

L. W. McKenzie, Turnpike theory, , Econometrica \textbf{44} (1976), 44 (1976), 841. doi: doi:10.2307/1911532. Google Scholar

[14]

B. Mordukhovich, Minimax design for a class of distributed parameter systems, , Automat. Remote Control, 50 (1990), 1333. Google Scholar

[15]

B. Mordukhovich and I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations,, in, (2004), 121. Google Scholar

[16]

J. Moser, Minimal solutions of variational problems on a torus,, Ann. Inst. H. Poincare, 3 (1986), 229. Google Scholar

[17]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems,, Control Cybernet. \textbf{37} (2008), 37 (2008), 451. Google Scholar

[18]

A. M. Rubinov, Economic dynamics,, J. Soviet Math., 26 (1984), 1975. doi: doi:10.1007/BF01084444. Google Scholar

[19]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule,, American Economic Review, 55 (1965), 486. Google Scholar

[20]

A. J. Zaslavski, Optimal programs on infinite horizon 1,, SIAM Journal on Control and Optimization, 33 (1995), 1643. doi: doi:10.1137/S036301299325726X. Google Scholar

[21]

A. J. Zaslavski, Optimal programs on infinite horizon 2,, SIAM Journal on Control and Optimization, 33 (1995), 1661. doi: doi:10.1137/S0363012993257271. Google Scholar

[22]

A. J. Zaslavski, "Turnpike Properties in the Calculus of Variations and Optimal Control,'', Springer, (2006). Google Scholar

[23]

A. J. Zaslavski, Turnpike results for a discrete-time optimal control system arising in economic dynamics,, Nonlinear Analysis, 67 (2007), 2024. doi: doi:10.1016/j.na.2006.08.029. Google Scholar

[24]

A. J. Zaslavski, Two turnpike results for a discrete-time optimal control system,, Nonlinear Analysis, 71 (2009), 902. doi: doi:10.1016/j.na.2008.12.053. Google Scholar

[25]

A. J .Zaslavski, Stability of a turnpike phenomenon for a discrete-time optimal control system,, J. Optim. Theory Appl., 145 (2010), 597. doi: doi:10.1007/s10957-010-9677-2. Google Scholar

show all references

References:
[1]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I ,, Physica D, 8 (1983), 381. doi: doi:10.1016/0167-2789(83)90233-6. Google Scholar

[2]

J. Blot, Infinite-horizon Pontryagin principles without invertibility,, J. Nonlinear Convex Anal., 10 (2009), 177. Google Scholar

[3]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions,, J. Optim. Theory Appl., 106 (2000), 411. doi: doi:10.1023/A:1004611816252. Google Scholar

[4]

P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems,, Automatica J. IFAC, 39 (2003), 1007. doi: doi:10.1016/S0005-1098(03)00060-8. Google Scholar

[5]

D. Gale, On optimal development in a multi-sector economy, , Review of Economic Studies, 34 (1967), 1. doi: doi:10.2307/2296567. Google Scholar

[6]

A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost,, Appl. Math. and Opt., 13 (1985), 19. doi: doi:10.1007/BF01442197. Google Scholar

[7]

A. Leizarowitz, Tracking nonperiodic trajectories with the overtaking criterion,, Appl. Math. and Opt., 14 (1986), 155. doi: doi:10.1007/BF01442233. Google Scholar

[8]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, , Arch. Rational Mech. Anal., 106 (1989), 161. doi: doi:10.1007/BF00251430. Google Scholar

[9]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem,, J. Math. Anal. Appl, 340 (2008), 498. doi: doi:10.1016/j.jmaa.2007.08.008. Google Scholar

[10]

V. L. Makarov and A. M. Rubinov, "Mathematical Theory of Economic Dynamics and Equilibria,'', Springer-Verlag, (1977). Google Scholar

[11]

M. A. Mamedov and S. Pehlivan, Statistical convergence of optimal paths,, Math. Japon., 52 (2000), 51. Google Scholar

[12]

M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems,, J. Math. Anal. Appl., 256 (2001), 686. doi: doi:10.1006/jmaa.2000.7061. Google Scholar

[13]

L. W. McKenzie, Turnpike theory, , Econometrica \textbf{44} (1976), 44 (1976), 841. doi: doi:10.2307/1911532. Google Scholar

[14]

B. Mordukhovich, Minimax design for a class of distributed parameter systems, , Automat. Remote Control, 50 (1990), 1333. Google Scholar

[15]

B. Mordukhovich and I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations,, in, (2004), 121. Google Scholar

[16]

J. Moser, Minimal solutions of variational problems on a torus,, Ann. Inst. H. Poincare, 3 (1986), 229. Google Scholar

[17]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems,, Control Cybernet. \textbf{37} (2008), 37 (2008), 451. Google Scholar

[18]

A. M. Rubinov, Economic dynamics,, J. Soviet Math., 26 (1984), 1975. doi: doi:10.1007/BF01084444. Google Scholar

[19]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule,, American Economic Review, 55 (1965), 486. Google Scholar

[20]

A. J. Zaslavski, Optimal programs on infinite horizon 1,, SIAM Journal on Control and Optimization, 33 (1995), 1643. doi: doi:10.1137/S036301299325726X. Google Scholar

[21]

A. J. Zaslavski, Optimal programs on infinite horizon 2,, SIAM Journal on Control and Optimization, 33 (1995), 1661. doi: doi:10.1137/S0363012993257271. Google Scholar

[22]

A. J. Zaslavski, "Turnpike Properties in the Calculus of Variations and Optimal Control,'', Springer, (2006). Google Scholar

[23]

A. J. Zaslavski, Turnpike results for a discrete-time optimal control system arising in economic dynamics,, Nonlinear Analysis, 67 (2007), 2024. doi: doi:10.1016/j.na.2006.08.029. Google Scholar

[24]

A. J. Zaslavski, Two turnpike results for a discrete-time optimal control system,, Nonlinear Analysis, 71 (2009), 902. doi: doi:10.1016/j.na.2008.12.053. Google Scholar

[25]

A. J .Zaslavski, Stability of a turnpike phenomenon for a discrete-time optimal control system,, J. Optim. Theory Appl., 145 (2010), 597. doi: doi:10.1007/s10957-010-9677-2. Google Scholar

[1]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[2]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[3]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[4]

Senda Ounaies, Jean-Marc Bonnisseau, Souhail Chebbi, Halil Mete Soner. Merton problem in an infinite horizon and a discrete time with frictions. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1323-1331. doi: 10.3934/jimo.2016.12.1323

[5]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[6]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[7]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192

[8]

Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389

[9]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[10]

Valery Y. Glizer, Oleg Kelis. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 211-235. doi: 10.3934/naco.2018013

[11]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[12]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[13]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[14]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[15]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[16]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

[17]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[18]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[19]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[20]

Nobusumi Sagara. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1219-1232. doi: 10.3934/dcdss.2018069

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]