2011, 1(2): 261-274. doi: 10.3934/naco.2011.1.261

Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces

1. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received  November 2010 Revised  March 2011 Published  June 2011

The purpose of this paper is to investigate the nonemptiness and boundedness of solution set for a generalized mixed variational inequality problem with strict feasibility in reflexive Banach spaces. We introduce a concept of strict feasibility for the generalized mixed variational inequality problem which includes the existing concepts of strict feasibility introduced for variational inequalities and complementarity problems. By using a degree theory developed in Wang and Huang [28], we prove that the monotone generalized mixed variational inequality has a nonempty bounded solution set if and only if it is strictly feasible. The results presented in this paper generalize and extend some known results in [8, 23].
Citation: Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261
References:
[1]

Ya. Alber, Generalized projection operators in Banach spaces: properties and applications,, in, 1 (1994), 1. Google Scholar

[2]

J. P. Aubin, "Optima and Equilibria,", Springer-Verlag, (1993). Google Scholar

[3]

C. Baiocchi, G. Buttazzo and F. Gastaldi, General existence theorems for unilateral problems in continuum mechanics,, Archive Rational Mechanics Anal., 100 (1988), 149. doi: doi:10.1007/BF00282202. Google Scholar

[4]

M. Bianchi, N. Hadjisavvas and S. Schaible, Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities,, J. Optim. Theory Appl., 122 (2004), 1. doi: doi:10.1023/B:JOTA.0000041728.12683.89. Google Scholar

[5]

I. Cioranescu, "Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,", Kluwer, (1990). Google Scholar

[6]

J. P. Crouzeix, Pseudomonotone variational inequality problems: Existence of solutions,, Math. Program., 78 (1997), 305. doi: doi:10.1007/BF02614358. Google Scholar

[7]

A. Daniilidis and N. Hadjisavvas, Coercivity conditions and variational inequalities,, Math. Program., 86 (1999), 433. doi: doi:10.1007/s101070050097. Google Scholar

[8]

F. Facchinei and J. S. Pang, "Finite-dimensional Variational Inequalities and Complementarity Problems,", Springer-Verlag, (2003). Google Scholar

[9]

J. H. Fan, X. Liu and J. L. Li, Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces,, Nonlinear Anal. TMA, 70 (2009), 3997. doi: doi:10.1016/j.na.2008.08.008. Google Scholar

[10]

Y. P. Fang and N. J. Huang, Feasibility and solvability for vector complementarity problems,, J. Optim. Theory Appl., 129 (2006), 373. doi: doi:10.1007/s10957-006-9073-0. Google Scholar

[11]

S. C. Fang and E. L. Peterson, Generalized variational inequalities,, J. Optim. Theory Appl., 38 (1982), 363. doi: doi:10.1007/BF00935344. Google Scholar

[12]

O. Güler, Existence of interior points and interior paths in nonlinear monotone complementarity problems,, Math. Oper. Res., 18 (1993), 128. doi: doi:10.1287/moor.18.1.128. Google Scholar

[13]

P.T. Harker and J. S. Pang, Finite-dimensional Variational and Nonlinear Complementarity Problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161. doi: doi:10.1007/BF01582255. Google Scholar

[14]

Y. R. He, Stable pseudomonotone variational inequality in reflexive Banach spaces,, J. Math. Anal. Appl., 330 (2007), 352. doi: doi:10.1016/j.jmaa.2006.07.063. Google Scholar

[15]

Y. R. He, A new projection algorithm for mixed variational inequalities,, Acta Math. Sci., 27 (2007), 215. Google Scholar

[16]

Y. R. He, X. Z. Mao and M. Zhou, Strict feasibility of variational inequalities in reflexive Banach spaces,, Acta Math. Sinica (English Series), 23 (2007), 563. doi: doi:10.1007/s10114-005-0918-5. Google Scholar

[17]

R. Hu and Y. P. Fang, Feasibility-solvability theorem for a generalized system,, J. Optim. Theory Appl., 142 (2009), 493. doi: doi:10.1007/s10957-009-9510-y. Google Scholar

[18]

R. Hu and Y. P. Fang, Strict feasibility and solvability for vector equilibrium problems in reflexive Banach spaces,, Optim. Lett., (): 11590. doi: doi:10.1007/s11590-010-0215-9. Google Scholar

[19]

V. Jeyakumar, W. Oettli and M. Natividad, A solvability theorem for a class of quasiconvex mappings with applications to optimization,, J. Math. Anal. Appl., 179 (1993), 537. doi: doi:10.1006/jmaa.1993.1368. Google Scholar

[20]

S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps,, J. Optim. Theory Appl., 18 (1976), 445. doi: doi:10.1007/BF00932654. Google Scholar

[21]

B. T. Kien, M. M. Wong, N. C. Wong and J. C. Yao, Degree theory for generalized variational inequalities and applications,, Eur. J. Oper. Res., 193 (2009), 12. doi: doi:10.1016/j.ejor.2007.10.028. Google Scholar

[22]

J. L. Li, The generalized projection operator on reflexive Banach spaces and its applications,, J. Math. Anal. Appl., 306 (2005), 55. doi: doi:10.1016/j.jmaa.2004.11.007. Google Scholar

[23]

F. S. Qiao and Y. R. He, Strict feasibility of pseudomonotone set-valued variational inequalities,, Optimization, 60 (2011), 303. doi: doi:10.1080/02331934.2010.507985. Google Scholar

[24]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). Google Scholar

[25]

M. Sion, On general minimax theorems,, Pacific J. Math., 8 (1958), 171. Google Scholar

[26]

W. Takahashi, "Nonlinear Functional Analysis,", Yokohama Publishers, (2000). Google Scholar

[27]

M. M. Vainberg, "Variational Methods and Method of Monotone Operators,", Wiley, (1973). Google Scholar

[28]

Z. B. Wang and N.J. Huang, Degree theory for a generalized set-valued variational inequality with an application in Banach spaces,, J. Global Optim., 49 (2011), 343. doi: doi:10.1007/s10898-010-9547-3. Google Scholar

[29]

K. Q. Wu and N. J. Huang, The generalized $f$-projection operator with an application,, Bull. Aust. Math. Soc., 73 (2006), 307. doi: doi:10.1017/S0004972700038892. Google Scholar

[30]

H. Y. Yin, C. X. Xu and Z. X. Zhang, The $F$-complementarity problem and its equivalence with the least element problem,, Acta Math. Sinica, 44 (2001), 679. Google Scholar

[31]

R. Y. Zhong and N. J. Huang, Stability analysis for Minty mixed variational inequality in reflexive Banach spaces,, J. Optim. Theory Appl., 147 (2010), 454. doi: doi:10.1007/s10957-010-9732-z. Google Scholar

show all references

References:
[1]

Ya. Alber, Generalized projection operators in Banach spaces: properties and applications,, in, 1 (1994), 1. Google Scholar

[2]

J. P. Aubin, "Optima and Equilibria,", Springer-Verlag, (1993). Google Scholar

[3]

C. Baiocchi, G. Buttazzo and F. Gastaldi, General existence theorems for unilateral problems in continuum mechanics,, Archive Rational Mechanics Anal., 100 (1988), 149. doi: doi:10.1007/BF00282202. Google Scholar

[4]

M. Bianchi, N. Hadjisavvas and S. Schaible, Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities,, J. Optim. Theory Appl., 122 (2004), 1. doi: doi:10.1023/B:JOTA.0000041728.12683.89. Google Scholar

[5]

I. Cioranescu, "Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,", Kluwer, (1990). Google Scholar

[6]

J. P. Crouzeix, Pseudomonotone variational inequality problems: Existence of solutions,, Math. Program., 78 (1997), 305. doi: doi:10.1007/BF02614358. Google Scholar

[7]

A. Daniilidis and N. Hadjisavvas, Coercivity conditions and variational inequalities,, Math. Program., 86 (1999), 433. doi: doi:10.1007/s101070050097. Google Scholar

[8]

F. Facchinei and J. S. Pang, "Finite-dimensional Variational Inequalities and Complementarity Problems,", Springer-Verlag, (2003). Google Scholar

[9]

J. H. Fan, X. Liu and J. L. Li, Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces,, Nonlinear Anal. TMA, 70 (2009), 3997. doi: doi:10.1016/j.na.2008.08.008. Google Scholar

[10]

Y. P. Fang and N. J. Huang, Feasibility and solvability for vector complementarity problems,, J. Optim. Theory Appl., 129 (2006), 373. doi: doi:10.1007/s10957-006-9073-0. Google Scholar

[11]

S. C. Fang and E. L. Peterson, Generalized variational inequalities,, J. Optim. Theory Appl., 38 (1982), 363. doi: doi:10.1007/BF00935344. Google Scholar

[12]

O. Güler, Existence of interior points and interior paths in nonlinear monotone complementarity problems,, Math. Oper. Res., 18 (1993), 128. doi: doi:10.1287/moor.18.1.128. Google Scholar

[13]

P.T. Harker and J. S. Pang, Finite-dimensional Variational and Nonlinear Complementarity Problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161. doi: doi:10.1007/BF01582255. Google Scholar

[14]

Y. R. He, Stable pseudomonotone variational inequality in reflexive Banach spaces,, J. Math. Anal. Appl., 330 (2007), 352. doi: doi:10.1016/j.jmaa.2006.07.063. Google Scholar

[15]

Y. R. He, A new projection algorithm for mixed variational inequalities,, Acta Math. Sci., 27 (2007), 215. Google Scholar

[16]

Y. R. He, X. Z. Mao and M. Zhou, Strict feasibility of variational inequalities in reflexive Banach spaces,, Acta Math. Sinica (English Series), 23 (2007), 563. doi: doi:10.1007/s10114-005-0918-5. Google Scholar

[17]

R. Hu and Y. P. Fang, Feasibility-solvability theorem for a generalized system,, J. Optim. Theory Appl., 142 (2009), 493. doi: doi:10.1007/s10957-009-9510-y. Google Scholar

[18]

R. Hu and Y. P. Fang, Strict feasibility and solvability for vector equilibrium problems in reflexive Banach spaces,, Optim. Lett., (): 11590. doi: doi:10.1007/s11590-010-0215-9. Google Scholar

[19]

V. Jeyakumar, W. Oettli and M. Natividad, A solvability theorem for a class of quasiconvex mappings with applications to optimization,, J. Math. Anal. Appl., 179 (1993), 537. doi: doi:10.1006/jmaa.1993.1368. Google Scholar

[20]

S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps,, J. Optim. Theory Appl., 18 (1976), 445. doi: doi:10.1007/BF00932654. Google Scholar

[21]

B. T. Kien, M. M. Wong, N. C. Wong and J. C. Yao, Degree theory for generalized variational inequalities and applications,, Eur. J. Oper. Res., 193 (2009), 12. doi: doi:10.1016/j.ejor.2007.10.028. Google Scholar

[22]

J. L. Li, The generalized projection operator on reflexive Banach spaces and its applications,, J. Math. Anal. Appl., 306 (2005), 55. doi: doi:10.1016/j.jmaa.2004.11.007. Google Scholar

[23]

F. S. Qiao and Y. R. He, Strict feasibility of pseudomonotone set-valued variational inequalities,, Optimization, 60 (2011), 303. doi: doi:10.1080/02331934.2010.507985. Google Scholar

[24]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). Google Scholar

[25]

M. Sion, On general minimax theorems,, Pacific J. Math., 8 (1958), 171. Google Scholar

[26]

W. Takahashi, "Nonlinear Functional Analysis,", Yokohama Publishers, (2000). Google Scholar

[27]

M. M. Vainberg, "Variational Methods and Method of Monotone Operators,", Wiley, (1973). Google Scholar

[28]

Z. B. Wang and N.J. Huang, Degree theory for a generalized set-valued variational inequality with an application in Banach spaces,, J. Global Optim., 49 (2011), 343. doi: doi:10.1007/s10898-010-9547-3. Google Scholar

[29]

K. Q. Wu and N. J. Huang, The generalized $f$-projection operator with an application,, Bull. Aust. Math. Soc., 73 (2006), 307. doi: doi:10.1017/S0004972700038892. Google Scholar

[30]

H. Y. Yin, C. X. Xu and Z. X. Zhang, The $F$-complementarity problem and its equivalence with the least element problem,, Acta Math. Sinica, 44 (2001), 679. Google Scholar

[31]

R. Y. Zhong and N. J. Huang, Stability analysis for Minty mixed variational inequality in reflexive Banach spaces,, J. Optim. Theory Appl., 147 (2010), 454. doi: doi:10.1007/s10957-010-9732-z. Google Scholar

[1]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[2]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[3]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[4]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[5]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[6]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[7]

Salahuddin. System of generalized mixed nonlinear ordered variational inclusions. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019026

[8]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[9]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[10]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[11]

Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081

[12]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[13]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[14]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[15]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[16]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[17]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[18]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[19]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[20]

Luis Barreira, Liviu Horia Popescu, Claudia Valls. Generalized exponential behavior and topological equivalence. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3023-3042. doi: 10.3934/dcdsb.2017161

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]