2011, 1(2): 275-282. doi: 10.3934/naco.2011.1.275

An optimal impulsive control regulator for linear systems

1. 

Department of Physical and Mathematical Science, Autonomous University of Nuevo Leon, Apdo postal 144-F, C.P. 66450, San Nicolas de los Garza, Nuevo Leon

2. 

Department of Physical and Mathematical Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, Mexico

Received  January 2011 Revised  March 2011 Published  June 2011

This paper addresses the optimal control problem for a linear system with respect to a Bolza-Meyer criterion, where both integral and non-integral terms are of the first degree. The optimal solution is obtained as an impulsive control, whereas the conventional linear feedback control fails to provide a causal solution. The theoretical result is complemented with illustrative examples verifying performance of the designed control algorithm in cases of large and short control horizons.
Citation: Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275
References:
[1]

A. Arutyunov, V. Jacimovic and F. Pereira, Second order necessary conditions of optimality for impulsive control systems, Proc. 41st IEEE Conference on Decision and Control, (2002), 1576-1581. doi: doi:10.1109/CDC.2002.1184744.

[2]

A. V. Arutyunov, D. Yu. Karamzin and F. Pereira, Pontryagin's Maximum Principle for Optimal Impulsive Control Problems, Doklady Mathematics, 81 (2010), 418-421. doi: doi:10.1134/S1064562410030221.

[3]

A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, On constrained impulsive control problems, J. Mathematical Sciences, 165 (2010), 654-688. doi: doi:10.1007/s10958-010-9834-z.

[4]

M. V. Basin and M. A. Pinsky, On impulse and continuous observation control design in Kalman filtering problem, Systems and Control Letters, 36 (1999), 213-219. doi: doi:10.1016/S0167-6911(98)00094-2.

[5]

A. Blaquiere, Impulsive optimal control with finite or infinite time horizon, J. Optimization Theory and Applications, 46 (1985), 431-439. doi: doi:10.1007/BF00939148.

[6]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Kluwer, 1988.

[7]

T. F. Filippova, State estimation problem for impulsive control systems, Proc. 1oth Mediterranean Conference on Automation and Control, Lisbon, Portugal, 2002.

[8]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Springer, 1975.

[9]

H. Kwakernaak and R. Sivan, "Linear Optimal Control Systems," Wiley-Interscience, New York, 1972.

[10]

Z. G. Li, C. Y. Wen and Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automatic Control, 46 (2001), 894-897. doi: doi:10.1109/9.928590.

[11]

X. Liu, Stability of impulsive control systems with time delay, Math. Computer Modelling, 39 (2004), 511-519. doi: doi:10.1016/S0895-7177(04)90522-5.

[12]

X. Liu and K. L. Teo, Impulsive control of chaotic system, Intern. J. Bifurcation and Chaos, 12 (2002), 1181-1190.

[13]

Y. Liu, K. L. Teo, L. S. Jennigns and S. Wang, On a class of optimal control problems with state jumps, J. Optimization Theory and Applications, 98 (1998), 65-82. doi: doi:10.1023/A:1022684730236.

[14]

G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, Proc. 36th IEEE Conference on Decision and Control, (1997), 2085-2090. doi: doi:10.1109/CDC.1997.657074.

[15]

R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, SIAM J. Control, 3 (1965), 191-205.

[16]

J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972.

show all references

References:
[1]

A. Arutyunov, V. Jacimovic and F. Pereira, Second order necessary conditions of optimality for impulsive control systems, Proc. 41st IEEE Conference on Decision and Control, (2002), 1576-1581. doi: doi:10.1109/CDC.2002.1184744.

[2]

A. V. Arutyunov, D. Yu. Karamzin and F. Pereira, Pontryagin's Maximum Principle for Optimal Impulsive Control Problems, Doklady Mathematics, 81 (2010), 418-421. doi: doi:10.1134/S1064562410030221.

[3]

A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, On constrained impulsive control problems, J. Mathematical Sciences, 165 (2010), 654-688. doi: doi:10.1007/s10958-010-9834-z.

[4]

M. V. Basin and M. A. Pinsky, On impulse and continuous observation control design in Kalman filtering problem, Systems and Control Letters, 36 (1999), 213-219. doi: doi:10.1016/S0167-6911(98)00094-2.

[5]

A. Blaquiere, Impulsive optimal control with finite or infinite time horizon, J. Optimization Theory and Applications, 46 (1985), 431-439. doi: doi:10.1007/BF00939148.

[6]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Kluwer, 1988.

[7]

T. F. Filippova, State estimation problem for impulsive control systems, Proc. 1oth Mediterranean Conference on Automation and Control, Lisbon, Portugal, 2002.

[8]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Springer, 1975.

[9]

H. Kwakernaak and R. Sivan, "Linear Optimal Control Systems," Wiley-Interscience, New York, 1972.

[10]

Z. G. Li, C. Y. Wen and Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automatic Control, 46 (2001), 894-897. doi: doi:10.1109/9.928590.

[11]

X. Liu, Stability of impulsive control systems with time delay, Math. Computer Modelling, 39 (2004), 511-519. doi: doi:10.1016/S0895-7177(04)90522-5.

[12]

X. Liu and K. L. Teo, Impulsive control of chaotic system, Intern. J. Bifurcation and Chaos, 12 (2002), 1181-1190.

[13]

Y. Liu, K. L. Teo, L. S. Jennigns and S. Wang, On a class of optimal control problems with state jumps, J. Optimization Theory and Applications, 98 (1998), 65-82. doi: doi:10.1023/A:1022684730236.

[14]

G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, Proc. 36th IEEE Conference on Decision and Control, (1997), 2085-2090. doi: doi:10.1109/CDC.1997.657074.

[15]

R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, SIAM J. Control, 3 (1965), 191-205.

[16]

J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972.

[1]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial and Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[2]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[3]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[4]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[5]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044

[6]

Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x

[7]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[8]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[9]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[10]

Elena K. Kostousova. State estimation for linear impulsive differential systems through polyhedral techniques. Conference Publications, 2009, 2009 (Special) : 466-475. doi: 10.3934/proc.2009.2009.466

[11]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[12]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[13]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[17]

Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030

[18]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[19]

Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369

[20]

Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413

 Impact Factor: 

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]