\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An optimal impulsive control regulator for linear systems

Abstract / Introduction Related Papers Cited by
  • This paper addresses the optimal control problem for a linear system with respect to a Bolza-Meyer criterion, where both integral and non-integral terms are of the first degree. The optimal solution is obtained as an impulsive control, whereas the conventional linear feedback control fails to provide a causal solution. The theoretical result is complemented with illustrative examples verifying performance of the designed control algorithm in cases of large and short control horizons.
    Mathematics Subject Classification: 49N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Arutyunov, V. Jacimovic and F. Pereira, Second order necessary conditions of optimality for impulsive control systems, Proc. 41st IEEE Conference on Decision and Control, (2002), 1576-1581.doi: doi:10.1109/CDC.2002.1184744.

    [2]

    A. V. Arutyunov, D. Yu. Karamzin and F. Pereira, Pontryagin's Maximum Principle for Optimal Impulsive Control Problems, Doklady Mathematics, 81 (2010), 418-421.doi: doi:10.1134/S1064562410030221.

    [3]

    A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, On constrained impulsive control problems, J. Mathematical Sciences, 165 (2010), 654-688.doi: doi:10.1007/s10958-010-9834-z.

    [4]

    M. V. Basin and M. A. Pinsky, On impulse and continuous observation control design in Kalman filtering problem, Systems and Control Letters, 36 (1999), 213-219.doi: doi:10.1016/S0167-6911(98)00094-2.

    [5]

    A. Blaquiere, Impulsive optimal control with finite or infinite time horizon, J. Optimization Theory and Applications, 46 (1985), 431-439.doi: doi:10.1007/BF00939148.

    [6]

    A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides," Kluwer, 1988.

    [7]

    T. F. Filippova, State estimation problem for impulsive control systems, Proc. 1oth Mediterranean Conference on Automation and Control, Lisbon, Portugal, 2002.

    [8]

    W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Springer, 1975.

    [9]

    H. Kwakernaak and R. Sivan, "Linear Optimal Control Systems," Wiley-Interscience, New York, 1972.

    [10]

    Z. G. Li, C. Y. Wen and Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Automatic Control, 46 (2001), 894-897.doi: doi:10.1109/9.928590.

    [11]

    X. Liu, Stability of impulsive control systems with time delay, Math. Computer Modelling, 39 (2004), 511-519.doi: doi:10.1016/S0895-7177(04)90522-5.

    [12]

    X. Liu and K. L. Teo, Impulsive control of chaotic system, Intern. J. Bifurcation and Chaos, 12 (2002), 1181-1190.

    [13]

    Y. Liu, K. L. Teo, L. S. Jennigns and S. Wang, On a class of optimal control problems with state jumps, J. Optimization Theory and Applications, 98 (1998), 65-82.doi: doi:10.1023/A:1022684730236.

    [14]

    G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, Proc. 36th IEEE Conference on Decision and Control, (1997), 2085-2090.doi: doi:10.1109/CDC.1997.657074.

    [15]

    R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures, SIAM J. Control, 3 (1965), 191-205.

    [16]

    J. Warga, "Optimal Control of Differential and Functional Equations," Academic Press, New York, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return