\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicative perturbation analysis for QR factorizations

Abstract / Introduction Related Papers Cited by
  • This paper is concerned with how the QR factors change when a real matrix $A$ suffers from a left or right multiplicative perturbation, where $A$ is assumed to have full column rank. It is proved that for a left multiplicative perturbation the relative changes in the QR factors in norm are no bigger than a small constant multiple of the norm of the difference between the perturbation and the identity matrix. One of common cases for a left multiplicative perturbation case naturally arises from the computation of the QR factorization. The newly established bounds can be used to explain the accuracy in the computed QR factors. For a right multiplicative perturbation, the bounds on the relative changes in the QR factors are still dependent upon the condition number of the scaled $R$-factor, however. Some ``optimized'' bounds are also obtained by taking into account certain invariant properties in the factors.
    Mathematics Subject Classification: 15A23; 65F35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Bhatia, Matrix factorizations and their perturbations, Linear Algebra Appl., 197/198 (1994), 245-276.doi: doi:10.1016/0024-3795(94)90490-1.

    [2]

    R. Bhatia, "Matrix Analysis," Graduate Texts in Mathematics, Vol. 169. Springer, New York, 1997.

    [3]

    R. Bhatia and K. Mukherjea, Variation of the unitary part of a matrix, SIAM J. Matrix Anal. Appl., 15 (1994), 1007-1014.doi: doi:10.1137/S0895479892243237.

    [4]

    Åke Björck, "Numerical Methods for Least Squares Problems," SIAM, Philadelphia, 1996.

    [5]

    X. W. Chang and C. C. Paige, Componentwise perturbation analyses for the QR factorization, Numer. Math., 88 (2001), 319-345.doi: doi:10.1007/PL00005447.

    [6]

    X. W. Chang, C. C. Paige and G. W. Stewart, Perturbation analyses for the QR factorization, SIAM J. Matrix Anal. Appl., 18 (1997), 775-791.doi: doi:10.1137/S0895479896297720.

    [7]

    X. W. Chang and D. Stehlé, Rigorous perturbation bounds of some matrix factorizations, SIAM J. Matrix Anal. Appl., 31 (2010), 2841-2859.doi: doi:10.1137/090778535.

    [8]

    X. W. Chang, D. Stehlé and G. Villard Perturbation Analysis of the QR Factor R in the Context of LLL Lattice Basis Reduction, 25 pages, submitted.

    [9]

    G. H. Golub and C. F. Van Loan, "Matrix Computations," Johns Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996.

    [10]

    N. J. Higham, "Accuracy and Stability of Numerical Algorithms," SIAM, Philadephia, 2nd edition, 2002.

    [11]

    R. C. Li, Relative perturbation bounds for the unitary polar factor, BIT, 37 (1997), 67-75.doi: doi:10.1007/BF02510173.

    [12]

    R. C. Li, Relative perturbation theory: I. eigenvalue and singular value variations, SIAM J. Matrix Anal. Appl., 19 (1998), 956-982.doi: doi:10.1137/S089547989629849X.

    [13]

    R. C. Li, Relative perturbation theory: II. eigenspace and singular subspace variations, SIAM J. Matrix Anal. Appl., 20 (1999), 471-492.doi: doi:10.1137/S0895479896298506.

    [14]

    R. C. Li, Relative perturbation bounds for positive polar factors of graded matrices, SIAM J. Matrix Anal. Appl., 25 (2005), 424-433.doi: doi:10.1137/S0895479803437153.

    [15]

    R. C. Li and G. W. Stewart, A new relative perturbation theorem for singular subspaces, Linear Algebra Appl., 313 (2000), 41-51.doi: doi:10.1016/S0024-3795(00)00074-4.

    [16]

    G. W. Stewart, Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer. Anal., 14 (1977), 509-518.doi: doi:10.1137/0714030.

    [17]

    G. W. Stewart, On the perturbation of LU, Cholesky and QR factorizations, SIAM J. Matrix Anal. Appl., 14 (1993), 1141-1146.doi: doi:10.1137/0614078.

    [18]

    G. W. Stewart and J. G. Sun, "Matrix Perturbation Theory," Academic Press, Boston, 1990.

    [19]

    J. G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT, 31 (1991), 341-352.doi: doi:10.1007/BF01931293.

    [20]

    J. G. Sun, Componentwise perturbation bounds for some matrix decompositions, BIT, 32 (1992), 702-714.doi: doi:10.1007/BF01994852.

    [21]

    J. G. Sun, On perturbation bounds for the QR factorization, Linear Algebra Appl., 215 (1995), 95-112.doi: doi:10.1016/0024-3795(93)00077-D.

    [22]

    H. Zha, A componentwise perturbation analysis of the QR decomposition, SIAM J. Matrix Anal. Appl., 14 (1993), 1124-1131.doi: doi:10.1137/0614076.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return