2011, 1(2): 317-331. doi: 10.3934/naco.2011.1.317

Stability analysis of parametric variational systems

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China, China

Received  October 2010 Revised  May 2011 Published  June 2011

In this paper, Robinson's metric regularity of a positive order around/at some point of parametric variational systems is discussed. Under some suitable conditions, the relationships among H$\ddot{o}$lder-likeness, H$\ddot{o}$lder calmness, metric regularity of a positive order and Robinson's metric regularity of a positive order are discussed for the parametric variational systems. Then, some applications to the stabilities of the optimal value map and the solution map are studied for a parametric vector optimization problem, respectively.
Citation: Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317
References:
[1]

F. J. Aragón Artacho and B. S. Mordukhovich, Metric regularity and Lipschitzian stability of parametric variational systems,, Nonlinear Analysis, 72 (2010), 1149.  doi: doi:10.1016/j.na.2009.07.051.  Google Scholar

[2]

F. J. Aragón Artacho and B. S. Mordukhovich, Enhanced metric regularity and Lipschitzian properties of variational systems,, Journal of Global Optimization, 50 (2011), 145.  doi: doi:10.1007/s10898-011-9698-x.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley and Sons, (1984).   Google Scholar

[4]

E. Bednarczuk, Upper Hölder continuity of minimal points,, Journal on Convex Analysis, 9 (2002), 327.   Google Scholar

[5]

E. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications,, Optimization, 53 (2004), 455.  doi: doi:10.1080/02331930412331330478.  Google Scholar

[6]

J. M. Borwein, Stability and regular points of inequality systems,, Journal of Optimization Theory and Applications, 48 (1986), 9.   Google Scholar

[7]

J. M. Borwein and Q. J. Zhu, "Techniques of Variational Analysis,", Springer, (2005).   Google Scholar

[8]

N. H. Chieu, J. C. Yao and N. D. Yen, Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions,, Nonlinear Analysis, 72 (2010), 3594.  doi: doi:10.1016/j.na.2009.12.039.  Google Scholar

[9]

P. H. Dien and N. D. Yen, On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints,, Applied Mathematics and Optimization, 24 (1991), 35.  doi: doi:10.1007/BF01447734.  Google Scholar

[10]

A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity,, Journal of Convex Analysis, 13 (2006), 281.   Google Scholar

[11]

I. Ekeland, On the variational principle,, Journal of Mathematical Analysis and Applications, 47 (1974), 324.  doi: doi:10.1016/0022-247X(74)90025-0.  Google Scholar

[12]

N. Q. Huy and J. C. Yao, Stability of implicit multifunctions in Asplund spaces,, Taiwanese Journal of Mathematics, 13 (2009), 47.   Google Scholar

[13]

V. Jeyakumar and N. D. Yen, Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization,, SIAM Journal on Optimization, 14 (2004), 1106.  doi: doi:10.1137/S1052623402419236.  Google Scholar

[14]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: doi:10.1080/02331930412331330379.  Google Scholar

[15]

Y. S. Ledyaev and Q. J. Zhu, Implicit multifunctions theorems,, Set-Valued Analysis, 7 (1999), 209.  doi: doi:10.1023/A:1008775413250.  Google Scholar

[16]

G. M. Lee, N. N. Tam and N. D. Yen, Normal coderivative for multifunctions and implicit function theorems,, Journal of Mathematical Analysis and Applications, 338 (2008), 11.  doi: doi:10.1016/j.jmaa.2007.05.001.  Google Scholar

[17]

M. H. Li and S. J. Li, Robinson metric regularity of parametric variational systems,, Nonlinear Analysis, 74 (2011), 2262.  doi: doi:10.1016/j.na.2010.11.031.  Google Scholar

[18]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications,", Springer, (2006).   Google Scholar

[19]

H. V. Ngai and M. Théra, Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization,, Set-Valued Analysis, 12 (2004), 195.  doi: doi:10.1023/B:SVAN.0000023396.58424.98.  Google Scholar

[20]

S. M. Robinson, Stability theory for systems of inequalities, I. Linear systems,, SIAM Journal on Numerical Analysis, 12 (1975), 754.  doi: doi:10.1137/0712056.  Google Scholar

[21]

S. M. Robinson, Stability theory for systems of inequalities, II. Differentiable nonlinear systems,, SIAM Journal on Numerical Analysis, 13 (1976), 497.  doi: doi:10.1137/0713043.  Google Scholar

[22]

S. M. Robinson, Generalized equations and their solutions, Part I, Basic theory,, Mathematical Programming Study, 10 (1979), 128.   Google Scholar

[23]

S. M. Robinson, Regularity and stability for convex multivalued functions,, Mathematics of Operations Research, 1 (1976), 130.  doi: doi:10.1287/moor.1.2.130.  Google Scholar

[24]

A. Uderzo, On some regularity properties in variational analysis,, Set-Valued and Variational Analysis, 17 (2009), 409.  doi: doi:10.1007/s11228-009-0121-4.  Google Scholar

[25]

N. D. Yen and J. C. Yao, Point-based sufficient conditions for metric regularity of implicit multifunctions,, Nonlinear Analysis, 70 (2009), 2806.  doi: doi:10.1016/j.na.2008.04.005.  Google Scholar

[26]

N. D. Yen, J. C. Yao and B. T. Kien, Covering properties at positive-order rates of multifunctions and some related topics,, Journal of Mathematical Analysis and Applications, 338 (2008), 467.  doi: doi:10.1016/j.jmaa.2007.05.041.  Google Scholar

show all references

References:
[1]

F. J. Aragón Artacho and B. S. Mordukhovich, Metric regularity and Lipschitzian stability of parametric variational systems,, Nonlinear Analysis, 72 (2010), 1149.  doi: doi:10.1016/j.na.2009.07.051.  Google Scholar

[2]

F. J. Aragón Artacho and B. S. Mordukhovich, Enhanced metric regularity and Lipschitzian properties of variational systems,, Journal of Global Optimization, 50 (2011), 145.  doi: doi:10.1007/s10898-011-9698-x.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley and Sons, (1984).   Google Scholar

[4]

E. Bednarczuk, Upper Hölder continuity of minimal points,, Journal on Convex Analysis, 9 (2002), 327.   Google Scholar

[5]

E. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications,, Optimization, 53 (2004), 455.  doi: doi:10.1080/02331930412331330478.  Google Scholar

[6]

J. M. Borwein, Stability and regular points of inequality systems,, Journal of Optimization Theory and Applications, 48 (1986), 9.   Google Scholar

[7]

J. M. Borwein and Q. J. Zhu, "Techniques of Variational Analysis,", Springer, (2005).   Google Scholar

[8]

N. H. Chieu, J. C. Yao and N. D. Yen, Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions,, Nonlinear Analysis, 72 (2010), 3594.  doi: doi:10.1016/j.na.2009.12.039.  Google Scholar

[9]

P. H. Dien and N. D. Yen, On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints,, Applied Mathematics and Optimization, 24 (1991), 35.  doi: doi:10.1007/BF01447734.  Google Scholar

[10]

A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity,, Journal of Convex Analysis, 13 (2006), 281.   Google Scholar

[11]

I. Ekeland, On the variational principle,, Journal of Mathematical Analysis and Applications, 47 (1974), 324.  doi: doi:10.1016/0022-247X(74)90025-0.  Google Scholar

[12]

N. Q. Huy and J. C. Yao, Stability of implicit multifunctions in Asplund spaces,, Taiwanese Journal of Mathematics, 13 (2009), 47.   Google Scholar

[13]

V. Jeyakumar and N. D. Yen, Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization,, SIAM Journal on Optimization, 14 (2004), 1106.  doi: doi:10.1137/S1052623402419236.  Google Scholar

[14]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: doi:10.1080/02331930412331330379.  Google Scholar

[15]

Y. S. Ledyaev and Q. J. Zhu, Implicit multifunctions theorems,, Set-Valued Analysis, 7 (1999), 209.  doi: doi:10.1023/A:1008775413250.  Google Scholar

[16]

G. M. Lee, N. N. Tam and N. D. Yen, Normal coderivative for multifunctions and implicit function theorems,, Journal of Mathematical Analysis and Applications, 338 (2008), 11.  doi: doi:10.1016/j.jmaa.2007.05.001.  Google Scholar

[17]

M. H. Li and S. J. Li, Robinson metric regularity of parametric variational systems,, Nonlinear Analysis, 74 (2011), 2262.  doi: doi:10.1016/j.na.2010.11.031.  Google Scholar

[18]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications,", Springer, (2006).   Google Scholar

[19]

H. V. Ngai and M. Théra, Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization,, Set-Valued Analysis, 12 (2004), 195.  doi: doi:10.1023/B:SVAN.0000023396.58424.98.  Google Scholar

[20]

S. M. Robinson, Stability theory for systems of inequalities, I. Linear systems,, SIAM Journal on Numerical Analysis, 12 (1975), 754.  doi: doi:10.1137/0712056.  Google Scholar

[21]

S. M. Robinson, Stability theory for systems of inequalities, II. Differentiable nonlinear systems,, SIAM Journal on Numerical Analysis, 13 (1976), 497.  doi: doi:10.1137/0713043.  Google Scholar

[22]

S. M. Robinson, Generalized equations and their solutions, Part I, Basic theory,, Mathematical Programming Study, 10 (1979), 128.   Google Scholar

[23]

S. M. Robinson, Regularity and stability for convex multivalued functions,, Mathematics of Operations Research, 1 (1976), 130.  doi: doi:10.1287/moor.1.2.130.  Google Scholar

[24]

A. Uderzo, On some regularity properties in variational analysis,, Set-Valued and Variational Analysis, 17 (2009), 409.  doi: doi:10.1007/s11228-009-0121-4.  Google Scholar

[25]

N. D. Yen and J. C. Yao, Point-based sufficient conditions for metric regularity of implicit multifunctions,, Nonlinear Analysis, 70 (2009), 2806.  doi: doi:10.1016/j.na.2008.04.005.  Google Scholar

[26]

N. D. Yen, J. C. Yao and B. T. Kien, Covering properties at positive-order rates of multifunctions and some related topics,, Journal of Mathematical Analysis and Applications, 338 (2008), 467.  doi: doi:10.1016/j.jmaa.2007.05.041.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[19]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]