2011, 1(2): 317-331. doi: 10.3934/naco.2011.1.317

Stability analysis of parametric variational systems

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China, China

Received  October 2010 Revised  May 2011 Published  June 2011

In this paper, Robinson's metric regularity of a positive order around/at some point of parametric variational systems is discussed. Under some suitable conditions, the relationships among H$\ddot{o}$lder-likeness, H$\ddot{o}$lder calmness, metric regularity of a positive order and Robinson's metric regularity of a positive order are discussed for the parametric variational systems. Then, some applications to the stabilities of the optimal value map and the solution map are studied for a parametric vector optimization problem, respectively.
Citation: Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317
References:
[1]

F. J. Aragón Artacho and B. S. Mordukhovich, Metric regularity and Lipschitzian stability of parametric variational systems,, Nonlinear Analysis, 72 (2010), 1149. doi: doi:10.1016/j.na.2009.07.051. Google Scholar

[2]

F. J. Aragón Artacho and B. S. Mordukhovich, Enhanced metric regularity and Lipschitzian properties of variational systems,, Journal of Global Optimization, 50 (2011), 145. doi: doi:10.1007/s10898-011-9698-x. Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley and Sons, (1984). Google Scholar

[4]

E. Bednarczuk, Upper Hölder continuity of minimal points,, Journal on Convex Analysis, 9 (2002), 327. Google Scholar

[5]

E. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications,, Optimization, 53 (2004), 455. doi: doi:10.1080/02331930412331330478. Google Scholar

[6]

J. M. Borwein, Stability and regular points of inequality systems,, Journal of Optimization Theory and Applications, 48 (1986), 9. Google Scholar

[7]

J. M. Borwein and Q. J. Zhu, "Techniques of Variational Analysis,", Springer, (2005). Google Scholar

[8]

N. H. Chieu, J. C. Yao and N. D. Yen, Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions,, Nonlinear Analysis, 72 (2010), 3594. doi: doi:10.1016/j.na.2009.12.039. Google Scholar

[9]

P. H. Dien and N. D. Yen, On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints,, Applied Mathematics and Optimization, 24 (1991), 35. doi: doi:10.1007/BF01447734. Google Scholar

[10]

A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity,, Journal of Convex Analysis, 13 (2006), 281. Google Scholar

[11]

I. Ekeland, On the variational principle,, Journal of Mathematical Analysis and Applications, 47 (1974), 324. doi: doi:10.1016/0022-247X(74)90025-0. Google Scholar

[12]

N. Q. Huy and J. C. Yao, Stability of implicit multifunctions in Asplund spaces,, Taiwanese Journal of Mathematics, 13 (2009), 47. Google Scholar

[13]

V. Jeyakumar and N. D. Yen, Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization,, SIAM Journal on Optimization, 14 (2004), 1106. doi: doi:10.1137/S1052623402419236. Google Scholar

[14]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123. doi: doi:10.1080/02331930412331330379. Google Scholar

[15]

Y. S. Ledyaev and Q. J. Zhu, Implicit multifunctions theorems,, Set-Valued Analysis, 7 (1999), 209. doi: doi:10.1023/A:1008775413250. Google Scholar

[16]

G. M. Lee, N. N. Tam and N. D. Yen, Normal coderivative for multifunctions and implicit function theorems,, Journal of Mathematical Analysis and Applications, 338 (2008), 11. doi: doi:10.1016/j.jmaa.2007.05.001. Google Scholar

[17]

M. H. Li and S. J. Li, Robinson metric regularity of parametric variational systems,, Nonlinear Analysis, 74 (2011), 2262. doi: doi:10.1016/j.na.2010.11.031. Google Scholar

[18]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications,", Springer, (2006). Google Scholar

[19]

H. V. Ngai and M. Théra, Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization,, Set-Valued Analysis, 12 (2004), 195. doi: doi:10.1023/B:SVAN.0000023396.58424.98. Google Scholar

[20]

S. M. Robinson, Stability theory for systems of inequalities, I. Linear systems,, SIAM Journal on Numerical Analysis, 12 (1975), 754. doi: doi:10.1137/0712056. Google Scholar

[21]

S. M. Robinson, Stability theory for systems of inequalities, II. Differentiable nonlinear systems,, SIAM Journal on Numerical Analysis, 13 (1976), 497. doi: doi:10.1137/0713043. Google Scholar

[22]

S. M. Robinson, Generalized equations and their solutions, Part I, Basic theory,, Mathematical Programming Study, 10 (1979), 128. Google Scholar

[23]

S. M. Robinson, Regularity and stability for convex multivalued functions,, Mathematics of Operations Research, 1 (1976), 130. doi: doi:10.1287/moor.1.2.130. Google Scholar

[24]

A. Uderzo, On some regularity properties in variational analysis,, Set-Valued and Variational Analysis, 17 (2009), 409. doi: doi:10.1007/s11228-009-0121-4. Google Scholar

[25]

N. D. Yen and J. C. Yao, Point-based sufficient conditions for metric regularity of implicit multifunctions,, Nonlinear Analysis, 70 (2009), 2806. doi: doi:10.1016/j.na.2008.04.005. Google Scholar

[26]

N. D. Yen, J. C. Yao and B. T. Kien, Covering properties at positive-order rates of multifunctions and some related topics,, Journal of Mathematical Analysis and Applications, 338 (2008), 467. doi: doi:10.1016/j.jmaa.2007.05.041. Google Scholar

show all references

References:
[1]

F. J. Aragón Artacho and B. S. Mordukhovich, Metric regularity and Lipschitzian stability of parametric variational systems,, Nonlinear Analysis, 72 (2010), 1149. doi: doi:10.1016/j.na.2009.07.051. Google Scholar

[2]

F. J. Aragón Artacho and B. S. Mordukhovich, Enhanced metric regularity and Lipschitzian properties of variational systems,, Journal of Global Optimization, 50 (2011), 145. doi: doi:10.1007/s10898-011-9698-x. Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley and Sons, (1984). Google Scholar

[4]

E. Bednarczuk, Upper Hölder continuity of minimal points,, Journal on Convex Analysis, 9 (2002), 327. Google Scholar

[5]

E. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications,, Optimization, 53 (2004), 455. doi: doi:10.1080/02331930412331330478. Google Scholar

[6]

J. M. Borwein, Stability and regular points of inequality systems,, Journal of Optimization Theory and Applications, 48 (1986), 9. Google Scholar

[7]

J. M. Borwein and Q. J. Zhu, "Techniques of Variational Analysis,", Springer, (2005). Google Scholar

[8]

N. H. Chieu, J. C. Yao and N. D. Yen, Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions,, Nonlinear Analysis, 72 (2010), 3594. doi: doi:10.1016/j.na.2009.12.039. Google Scholar

[9]

P. H. Dien and N. D. Yen, On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints,, Applied Mathematics and Optimization, 24 (1991), 35. doi: doi:10.1007/BF01447734. Google Scholar

[10]

A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity,, Journal of Convex Analysis, 13 (2006), 281. Google Scholar

[11]

I. Ekeland, On the variational principle,, Journal of Mathematical Analysis and Applications, 47 (1974), 324. doi: doi:10.1016/0022-247X(74)90025-0. Google Scholar

[12]

N. Q. Huy and J. C. Yao, Stability of implicit multifunctions in Asplund spaces,, Taiwanese Journal of Mathematics, 13 (2009), 47. Google Scholar

[13]

V. Jeyakumar and N. D. Yen, Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization,, SIAM Journal on Optimization, 14 (2004), 1106. doi: doi:10.1137/S1052623402419236. Google Scholar

[14]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123. doi: doi:10.1080/02331930412331330379. Google Scholar

[15]

Y. S. Ledyaev and Q. J. Zhu, Implicit multifunctions theorems,, Set-Valued Analysis, 7 (1999), 209. doi: doi:10.1023/A:1008775413250. Google Scholar

[16]

G. M. Lee, N. N. Tam and N. D. Yen, Normal coderivative for multifunctions and implicit function theorems,, Journal of Mathematical Analysis and Applications, 338 (2008), 11. doi: doi:10.1016/j.jmaa.2007.05.001. Google Scholar

[17]

M. H. Li and S. J. Li, Robinson metric regularity of parametric variational systems,, Nonlinear Analysis, 74 (2011), 2262. doi: doi:10.1016/j.na.2010.11.031. Google Scholar

[18]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications,", Springer, (2006). Google Scholar

[19]

H. V. Ngai and M. Théra, Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization,, Set-Valued Analysis, 12 (2004), 195. doi: doi:10.1023/B:SVAN.0000023396.58424.98. Google Scholar

[20]

S. M. Robinson, Stability theory for systems of inequalities, I. Linear systems,, SIAM Journal on Numerical Analysis, 12 (1975), 754. doi: doi:10.1137/0712056. Google Scholar

[21]

S. M. Robinson, Stability theory for systems of inequalities, II. Differentiable nonlinear systems,, SIAM Journal on Numerical Analysis, 13 (1976), 497. doi: doi:10.1137/0713043. Google Scholar

[22]

S. M. Robinson, Generalized equations and their solutions, Part I, Basic theory,, Mathematical Programming Study, 10 (1979), 128. Google Scholar

[23]

S. M. Robinson, Regularity and stability for convex multivalued functions,, Mathematics of Operations Research, 1 (1976), 130. doi: doi:10.1287/moor.1.2.130. Google Scholar

[24]

A. Uderzo, On some regularity properties in variational analysis,, Set-Valued and Variational Analysis, 17 (2009), 409. doi: doi:10.1007/s11228-009-0121-4. Google Scholar

[25]

N. D. Yen and J. C. Yao, Point-based sufficient conditions for metric regularity of implicit multifunctions,, Nonlinear Analysis, 70 (2009), 2806. doi: doi:10.1016/j.na.2008.04.005. Google Scholar

[26]

N. D. Yen, J. C. Yao and B. T. Kien, Covering properties at positive-order rates of multifunctions and some related topics,, Journal of Mathematical Analysis and Applications, 338 (2008), 467. doi: doi:10.1016/j.jmaa.2007.05.041. Google Scholar

[1]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[2]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[3]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[4]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[5]

Christos Gavriel, Richard Vinter. Regularity of minimizers for second order variational problems in one independent variable. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 547-557. doi: 10.3934/dcds.2011.29.547

[6]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019105

[7]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure & Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[8]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[9]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[10]

Mark Pollicott. Local Hölder regularity of densities and Livsic theorems for non-uniformly hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1247-1256. doi: 10.3934/dcds.2005.13.1247

[11]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[12]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[13]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[14]

Alain Haraux, Mitsuharu Ôtani. Analyticity and regularity for a class of second order evolution equations. Evolution Equations & Control Theory, 2013, 2 (1) : 101-117. doi: 10.3934/eect.2013.2.101

[15]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[16]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[17]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[18]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[19]

Roberta Ghezzi, Frédéric Jean. A new class of $(H^k,1)$-rectifiable subsets of metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (2) : 881-898. doi: 10.3934/cpaa.2013.12.881

[20]

Amol Sasane. Extension of the $\nu$-metric for stabilizable plants over $H^\infty$. Mathematical Control & Related Fields, 2012, 2 (1) : 29-44. doi: 10.3934/mcrf.2012.2.29

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]