Citation: |
[1] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.doi: 10.1016/0022-247X(81)90123-2. |
[2] |
L. Caiping and Y. Xinmin, Generalized $(\rho, \theta, \eta)-$invariant monotonicity and generalized $(\rho, \theta, \eta)-$invexity of non-differentiable functions, Journal of Inequalities and Applications, 2009 (2009), Article ID\#393940, 16 pages.doi: 10.1155/2009/393940. |
[3] |
S. K. Mishra, M. Jaiswal and Pankaj, Optimality conditions for multiple objective fractional subset programming with invex and related nonconvex functions, Communications on Applied Nonlinear Analysis, 17 (2010), 89-101. |
[4] |
S. K. Mishra, S. Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Nonconvex Optimization and its Applications, Vol. 19, Springer-Verlag, 2009. |
[5] |
R. U. Verma, Approximation solvability of a class of nonlinear set-valued inclusions involving $(A,\eta)-$monotone mappings, Journal of Mathematical Analysis and Applications, 337 (2008), 969-975. |
[6] |
R. U. Verma, The optimality condition for multiple objective fractional subset programming based on generalized $(\rho,\eta)-$invex functions, Advances in Nonlinear Variational Inequalities, 14 (2011), 61-72. |
[7] |
G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and parametric duality in semiinfinite discrete minmax fractional programming, Advances in Nonlinear Variational Inequalities, 10 (2007), 1-20. |
[8] |
G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and global parametric sufficient optimality conditions in semiinfinite discrete minmax fractional programming, PanAmerican Mathematical Journal, 17 (2007), 1-26. |