2011, 1(3): 333-339. doi: 10.3934/naco.2011.1.333

General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity

1. 

Texas A&M University--Kingsville, Department of Mathematics, Kingsville, Texas 78363, United States

Received  March 2011 Revised  May 2011 Published  September 2011

Motivated by the recent investigations, first a general framework for a class of $(\rho, \eta, A)$-invex n-set functions is introduced, and then some optimality conditions for multiple objective fractional programming on the generalized $(\rho, \eta, A)$-invexity are explored. The obtained results are general in nature and application-oriented to other investigations on fractional subset programming in literature.
Citation: Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333
References:
[1]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, Journal of Mathematical Analysis and Applications, 80 (1981), 545. doi: 10.1016/0022-247X(81)90123-2. Google Scholar

[2]

L. Caiping and Y. Xinmin, Generalized $(\rho, \theta, \eta)-$invariant monotonicity and generalized $(\rho, \theta, \eta)-$invexity of non-differentiable functions,, Journal of Inequalities and Applications, 2009 (2009). doi: 10.1155/2009/393940. Google Scholar

[3]

S. K. Mishra, M. Jaiswal and Pankaj, Optimality conditions for multiple objective fractional subset programming with invex and related nonconvex functions,, Communications on Applied Nonlinear Analysis, 17 (2010), 89. Google Scholar

[4]

S. K. Mishra, S. Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Nonconvex Optimization and its Applications,, Vol. 19, (2009). Google Scholar

[5]

R. U. Verma, Approximation solvability of a class of nonlinear set-valued inclusions involving $(A,\eta)-$monotone mappings,, Journal of Mathematical Analysis and Applications, 337 (2008), 969. Google Scholar

[6]

R. U. Verma, The optimality condition for multiple objective fractional subset programming based on generalized $(\rho,\eta)-$invex functions,, Advances in Nonlinear Variational Inequalities, 14 (2011), 61. Google Scholar

[7]

G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and parametric duality in semiinfinite discrete minmax fractional programming,, Advances in Nonlinear Variational Inequalities, 10 (2007), 1. Google Scholar

[8]

G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and global parametric sufficient optimality conditions in semiinfinite discrete minmax fractional programming,, PanAmerican Mathematical Journal, 17 (2007), 1. Google Scholar

show all references

References:
[1]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions,, Journal of Mathematical Analysis and Applications, 80 (1981), 545. doi: 10.1016/0022-247X(81)90123-2. Google Scholar

[2]

L. Caiping and Y. Xinmin, Generalized $(\rho, \theta, \eta)-$invariant monotonicity and generalized $(\rho, \theta, \eta)-$invexity of non-differentiable functions,, Journal of Inequalities and Applications, 2009 (2009). doi: 10.1155/2009/393940. Google Scholar

[3]

S. K. Mishra, M. Jaiswal and Pankaj, Optimality conditions for multiple objective fractional subset programming with invex and related nonconvex functions,, Communications on Applied Nonlinear Analysis, 17 (2010), 89. Google Scholar

[4]

S. K. Mishra, S. Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Nonconvex Optimization and its Applications,, Vol. 19, (2009). Google Scholar

[5]

R. U. Verma, Approximation solvability of a class of nonlinear set-valued inclusions involving $(A,\eta)-$monotone mappings,, Journal of Mathematical Analysis and Applications, 337 (2008), 969. Google Scholar

[6]

R. U. Verma, The optimality condition for multiple objective fractional subset programming based on generalized $(\rho,\eta)-$invex functions,, Advances in Nonlinear Variational Inequalities, 14 (2011), 61. Google Scholar

[7]

G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and parametric duality in semiinfinite discrete minmax fractional programming,, Advances in Nonlinear Variational Inequalities, 10 (2007), 1. Google Scholar

[8]

G. J. Zalmai and Q. B. Zhang, Generalized $(F, \beta, \phi, \rho, \theta)-$univex functions and global parametric sufficient optimality conditions in semiinfinite discrete minmax fractional programming,, PanAmerican Mathematical Journal, 17 (2007), 1. Google Scholar

[1]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

[2]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[3]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[4]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[5]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[6]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019089

[7]

Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081

[8]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[9]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[10]

Vladimir Srochko, Vladimir Antonik, Elena Aksenyushkina. Sufficient optimality conditions for extremal controls based on functional increment formulas. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 191-199. doi: 10.3934/naco.2017013

[11]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[12]

Majid E. Abbasov. Generalized exhausters: Existence, construction, optimality conditions. Journal of Industrial & Management Optimization, 2015, 11 (1) : 217-230. doi: 10.3934/jimo.2015.11.217

[13]

Bao Qing Hu, Song Wang. A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions. Journal of Industrial & Management Optimization, 2006, 2 (4) : 373-385. doi: 10.3934/jimo.2006.2.373

[14]

Bernard Dacorogna. Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 257-263. doi: 10.3934/dcdsb.2001.1.257

[15]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[16]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[17]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[18]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[19]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[20]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]