\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity

Abstract / Introduction Related Papers Cited by
  • Using a parametric approach, we establish necessary and sufficient optimality conditions and derive some duality theorems for a class of nonsmooth minmax fractional programming problems containing generalized univex functions. The results obtained in this paper extend and improve some corresponding results in the literature.
    Mathematics Subject Classification: Primary: 90C32, 49J35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. R. Bector, S. Chandra and M. K. Bector, Generalized fractional programming duality: a parametric approach, J. Optim. Theory Appl., 60 (1989), 243-260.doi: 10.1007/BF00940006.

    [2]

    C. R. Bector, S. K. Duneja and S. Gupta, Univex functions and univex nonlinear programming, in: Proceedings of the Asministrative Sciences Association of Canada, 1992, 115-124.

    [3]

    S. Chandra, B. D. Craven and B. Mond, Generalized fractional programming duality: a ratio game approach, J. Austral. Math. Soc., 28 (1986), 170-180.doi: 10.1017/S0334270000005282.

    [4]

    J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized fractional programming, Math. Programming, 27 (1983), 342-354.doi: 10.1007/BF02591908.

    [5]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," Wiley-Interscience, New York, 1983.

    [6]

    M. A. Hanson, On sufficiency of the Kuhn-Tucker condition, J. Math. Anal. Appl., 80 (1981), 545-550.doi: 10.1016/0022-247X(81)90123-2.

    [7]

    I. Husain, M. A. Hanson and Z. Jabeen, On nondifferentiable fractional minimax programming, European J. Oper. Res., 160 (2005), 202-217.doi: 10.1016/S0377-2217(03)00437-5.

    [8]

    V. Jeyakumar, Equivalence of saddle-points and optima, and duality for a class of nonsmooth non-convex problems, J. Math. Anal. Appl., 130 (1988), 334-343.doi: 10.1016/0022-247X(88)90309-5.

    [9]

    V. Jeyakumar and B. Mond, On generalized convex mathematical programming, J. Austral. Math. Soc., 34 (1992), 43-53.doi: 10.1017/S0334270000007372.

    [10]

    G. M. Lee, Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Soc., 15 (1994), 127-136.

    [11]

    Z. A. Liang and Z. W. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity, J. Math. Anal. Appl., 277 (2003), 474-488.doi: 10.1016/S0022-247X(02)00553-X.

    [12]

    J. C. Liu, Optimality and duality for generalized fractional programming involving nonsmooth $(F,\rho)$-convex functions, Comput. Math. Appl., 32 (1996), 91-102.doi: 10.1016/0898-1221(96)00106-X.

    [13]

    J. C. Liu, Optimality and duality for generalized fractional programming involving nonsmooth pseudoinvex functions, J. Math. Anal. Appl., 202 (1996), 667-685.doi: 10.1006/jmaa.1996.0341.

    [14]

    H. Z. Luo and H. X. Wu, On necessary conditions for a class of nondifferentiable minimax fractional programming, J. Comput. Appl. Math., 215 (2008), 103-113.doi: 10.1016/j.cam.2007.03.032.

    [15]

    S. K. Mishra, R. P. Pant and J. S. Rautela, Generalized $\alpha$-invexity and nondifferentiable minimax fractional programming, J. Comput. Appl. Math., 206 (2007), 122-135.doi: 10.1016/j.cam.2006.06.009.

    [16]

    S. K. Mishra, S. Y. Wang, K. K. Lai and J. M. Shi, Nondifferentiable minimax fractional programming under generalized univexity, J. Comput. Appl. Math., 158 (2007), 379-395.doi: 10.1016/S0377-0427(03)00455-2.

    [17]

    B. Mond and T. Weir, Generalized concavity and duality, in "Generalized Concavity in optimization and economics" (eds. S. Schaible and W.T. Ziemba), Academic Press, (1981), 263-279.

    [18]

    T. W. Reiland, Nonsmooth invexity, Bull. Austral. Math. Soc., 42 (1990), 437-446.doi: 10.1017/S0004972700028604.

    [19]

    W. E. Schmitendorf, Necessary conditions and sufficient conditions for static minimax problems, J. Math. Anal. Appl., 57 (1977), 683-693.doi: 10.1016/0022-247X(77)90255-4.

    [20]

    G. J. Zalmai, Optimality conditions and duality models for generalized fractional programming problems containing locally subdifferentiable and $\rho$-convex functions, Optimization, 32 (1995), 95-124.doi: 10.1080/02331939508844040.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return