• Previous Article
    Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability
  • NACO Home
  • This Issue
  • Next Article
    Strong convergence theorems with three-step iteration in star-shaped metric spaces
2011, 1(3): 381-388. doi: 10.3934/naco.2011.1.381

Some results on $l^k$-eigenvalues of tensor and related spectral radius

1. 

School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Kowloon, Hong Kong

Received  April 2011 Revised  July 2011 Published  September 2011

In this paper, we study the $l^k$-eigenvalues/vectors of a real symmetric square tensor. Specially, we investigate some properties on the related $l^k$-spectral radius of a real nonnegative symmetric square tensor.
Citation: Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381
References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function,, in, (2008), 1.   Google Scholar

[2]

K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu Math Sci, 6 (2008), 507.   Google Scholar

[3]

K. C. Chang, L. Qi and G. Zhou, Singular values of a real rectangular tensor,, J. Math. Anal. Appl., 370 (2010), 284.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[4]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach,, in, 1 (2005), 129.   Google Scholar

[5]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor,, SIAM J. Matrix Anal. Appl., 31 (2009), 1090.  doi: 10.1137/09074838X.  Google Scholar

[6]

L. Qi, Eigenvalues of a real supersymmetric tensor,, J. Symbolic Comput., 40 (2005), 1302.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[7]

L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem,, Math. Program., 118 (2009), 301.  doi: 10.1007/s10107-007-0193-6.  Google Scholar

[8]

L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging,, SIAM J. Imaging Sci., 3 (2010), 416.   Google Scholar

[9]

Y. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors,, SIAM J. Matrix Anal. Appl., 31 (2010), 2517.  doi: 10.1137/090778766.  Google Scholar

show all references

References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function,, in, (2008), 1.   Google Scholar

[2]

K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu Math Sci, 6 (2008), 507.   Google Scholar

[3]

K. C. Chang, L. Qi and G. Zhou, Singular values of a real rectangular tensor,, J. Math. Anal. Appl., 370 (2010), 284.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[4]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach,, in, 1 (2005), 129.   Google Scholar

[5]

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor,, SIAM J. Matrix Anal. Appl., 31 (2009), 1090.  doi: 10.1137/09074838X.  Google Scholar

[6]

L. Qi, Eigenvalues of a real supersymmetric tensor,, J. Symbolic Comput., 40 (2005), 1302.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[7]

L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem,, Math. Program., 118 (2009), 301.  doi: 10.1007/s10107-007-0193-6.  Google Scholar

[8]

L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging,, SIAM J. Imaging Sci., 3 (2010), 416.   Google Scholar

[9]

Y. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors,, SIAM J. Matrix Anal. Appl., 31 (2010), 2517.  doi: 10.1137/090778766.  Google Scholar

[1]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[2]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[3]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[4]

Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042

[5]

Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control & Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011

[6]

Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure & Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37

[7]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[8]

Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020147

[9]

Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281

[10]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[11]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[12]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[13]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[14]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[15]

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077

[16]

Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic & Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317

[17]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[18]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[19]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

[20]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]