\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some results on $l^k$-eigenvalues of tensor and related spectral radius

Abstract / Introduction Related Papers Cited by
  • In this paper, we study the $l^k$-eigenvalues/vectors of a real symmetric square tensor. Specially, we investigate some properties on the related $l^k$-spectral radius of a real nonnegative symmetric square tensor.
    Mathematics Subject Classification: Primary: 15A18, 15A69; Secondary: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in "Medical Image Computing and Computer-Assisted Intervention MICCAI 2008'' (eds. Dimitris Metaxas, Leon Axel, Gabor Fichtinger and Gábor Székely), Springer-Verlag, Berlin/Heidelberg, (2008), 1-8.

    [2]

    K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors, Commu Math Sci, 6 (2008), 507-520.

    [3]

    K. C. Chang, L. Qi and G. Zhou, Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.doi: 10.1016/j.jmaa.2010.04.037.

    [4]

    L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, in "Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing, CAMSAP'05'', 1, IEEE Computer Society Press, Piscataway, (2005), 129-132.

    [5]

    M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.doi: 10.1137/09074838X.

    [6]

    L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.doi: 10.1016/j.jsc.2005.05.007.

    [7]

    L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Math. Program., 118 (2009), 301-316.doi: 10.1007/s10107-007-0193-6.

    [8]

    L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.

    [9]

    Y. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530.doi: 10.1137/090778766.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return