-
Previous Article
Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability
- NACO Home
- This Issue
-
Next Article
Strong convergence theorems with three-step iteration in star-shaped metric spaces
Some results on $l^k$-eigenvalues of tensor and related spectral radius
1. | School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China |
2. | Department of Applied Mathematics, Hong Kong Polytechnic University, Kowloon, Hong Kong |
References:
[1] |
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function,, in, (2008), 1. Google Scholar |
[2] |
K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu Math Sci, 6 (2008), 507.
|
[3] |
K. C. Chang, L. Qi and G. Zhou, Singular values of a real rectangular tensor,, J. Math. Anal. Appl., 370 (2010), 284.
doi: 10.1016/j.jmaa.2010.04.037. |
[4] |
L. H. Lim, Singular values and eigenvalues of tensors: a variational approach,, in, 1 (2005), 129. Google Scholar |
[5] |
M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor,, SIAM J. Matrix Anal. Appl., 31 (2009), 1090.
doi: 10.1137/09074838X. |
[6] |
L. Qi, Eigenvalues of a real supersymmetric tensor,, J. Symbolic Comput., 40 (2005), 1302.
doi: 10.1016/j.jsc.2005.05.007. |
[7] |
L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem,, Math. Program., 118 (2009), 301.
doi: 10.1007/s10107-007-0193-6. |
[8] |
L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging,, SIAM J. Imaging Sci., 3 (2010), 416.
|
[9] |
Y. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors,, SIAM J. Matrix Anal. Appl., 31 (2010), 2517.
doi: 10.1137/090778766. |
show all references
References:
[1] |
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function,, in, (2008), 1. Google Scholar |
[2] |
K. C. Chang, K. Pearson and T. Zhang, Perron Frobenius theorem for nonnegative tensors,, Commu Math Sci, 6 (2008), 507.
|
[3] |
K. C. Chang, L. Qi and G. Zhou, Singular values of a real rectangular tensor,, J. Math. Anal. Appl., 370 (2010), 284.
doi: 10.1016/j.jmaa.2010.04.037. |
[4] |
L. H. Lim, Singular values and eigenvalues of tensors: a variational approach,, in, 1 (2005), 129. Google Scholar |
[5] |
M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor,, SIAM J. Matrix Anal. Appl., 31 (2009), 1090.
doi: 10.1137/09074838X. |
[6] |
L. Qi, Eigenvalues of a real supersymmetric tensor,, J. Symbolic Comput., 40 (2005), 1302.
doi: 10.1016/j.jsc.2005.05.007. |
[7] |
L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem,, Math. Program., 118 (2009), 301.
doi: 10.1007/s10107-007-0193-6. |
[8] |
L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging,, SIAM J. Imaging Sci., 3 (2010), 416.
|
[9] |
Y. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors,, SIAM J. Matrix Anal. Appl., 31 (2010), 2517.
doi: 10.1137/090778766. |
[1] |
Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975 |
[2] |
Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291 |
[3] |
Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 |
[4] |
Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure & Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37 |
[5] |
Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050 |
[6] |
Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281 |
[7] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[8] |
Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257 |
[9] |
Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113 |
[10] |
Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75 |
[11] |
Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic & Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317 |
[12] |
Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040 |
[13] |
O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077 |
[14] |
Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232 |
[15] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[16] |
Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173 |
[17] |
Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179 |
[18] |
Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407 |
[19] |
Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, Dorothea Wagner. Augmenting $k$-core generation with preferential attachment. Networks & Heterogeneous Media, 2008, 3 (2) : 277-294. doi: 10.3934/nhm.2008.3.277 |
[20] |
Jordan Emme. Hermodynamic formalism and k-bonacci substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3701-3719. doi: 10.3934/dcds.2017157 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]