Citation: |
[1] |
H. Arsham, A hybrid gradient and feasible direction pivotal solution algorithm for general linear programs, Applied Mathematics and Computation, 188 (2007), 596-611. |
[2] |
H. Arsham, T. Damij and J. Grad, An algorithm for simplex tableau reduction: the push-to-pull solution strategy, Applied Mathematics and Computation, 137 (2003), 525-547. |
[3] |
E. Barnes, V. Chen, B. Gopalakrishnan and E. L. Johnson, A least-squares primal-dual algorithm for solving linear programming problems, Operations Research Letters, 30 (2002), 289-294.doi: 10.1016/S0167-6377(02)00163-3. |
[4] |
G. B. Dantzig, "Linear Programming and Extensions," Princeton University Press, Princeton, N. J., 1963. |
[5] |
N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), 373-395.doi: 10.1007/BF02579150. |
[6] |
Y. Liu, An exterior point linear programming method based on inclusive normal cones, Journal of Industrial and Management Optimization, 6 (2010), 825-846.doi: 10.3934/jimo.2010.6.825. |
[7] |
P. Q. Pan, A largest-distance pivot rule for the simplex algorithm, European Journal of Operational Research, 187 (2008), 393-402. |
[8] |
X. J. Xu and Y. Y. Ye, A generalized homogeneous and self-dual algorithm for linear programming, Operations Research Letters, 17 (1995), 181-190.doi: 10.1016/0167-6377(95)00002-2. |
[9] |
W. C. Yeh and H. W. Corley, A simple direct cosine simplex algorithm, Applied Mathematics and Computation, 214 (2009), 178-186.doi: 10.1016/j.amc.2009.03.080. |