2011, 1(3): 407-415. doi: 10.3934/naco.2011.1.407

On linear vector optimization duality in infinite-dimensional spaces

1. 

Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, Germany

Received  April 2011 Revised  July 2011 Published  September 2011

In this paper we extend to infinite-dimensional spaces a vector duality concept recently considered in the literature in connection to the classical vector minimization linear optimization problem in a finite-dimensional framework. Weak, strong and converse duality for the vector dual problem introduced with this respect are proven and we also investigate its connections to some classical vector duals considered in the same framework in the literature.
Citation: Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407
References:
[1]

R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, ().  doi: 10.1007/s11590-010-0263-1.  Google Scholar

[2]

R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization,", Springer-Verlag, (2009).   Google Scholar

[3]

R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I),, Optimization, 53 (2004), 281.  doi: 10.1080/02331930410001715514.  Google Scholar

[4]

A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization,, Journal of Optimization Theory and Applications, 82 (1994), 1.  doi: 10.1007/BF02191776.  Google Scholar

[5]

A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization,, Journal of Convex Analysis, 11 (2004), 163.   Google Scholar

[6]

J. Jahn, Duality in vector optimization,, Mathematical Programming, 25 (1983), 343.  doi: 10.1007/BF02594784.  Google Scholar

[7]

J. Jahn, "Vector Optimization - Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[8]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[9]

C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002).   Google Scholar

[10]

C. Zălinescu, Stability for a class of nonlinear optimization problems and applications,, in, (1988), 437.   Google Scholar

show all references

References:
[1]

R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, ().  doi: 10.1007/s11590-010-0263-1.  Google Scholar

[2]

R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization,", Springer-Verlag, (2009).   Google Scholar

[3]

R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I),, Optimization, 53 (2004), 281.  doi: 10.1080/02331930410001715514.  Google Scholar

[4]

A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization,, Journal of Optimization Theory and Applications, 82 (1994), 1.  doi: 10.1007/BF02191776.  Google Scholar

[5]

A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization,, Journal of Convex Analysis, 11 (2004), 163.   Google Scholar

[6]

J. Jahn, Duality in vector optimization,, Mathematical Programming, 25 (1983), 343.  doi: 10.1007/BF02594784.  Google Scholar

[7]

J. Jahn, "Vector Optimization - Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[8]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[9]

C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002).   Google Scholar

[10]

C. Zălinescu, Stability for a class of nonlinear optimization problems and applications,, in, (1988), 437.   Google Scholar

[1]

Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial & Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031

[2]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[3]

Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial & Management Optimization, 2005, 1 (4) : 477-486. doi: 10.3934/jimo.2005.1.477

[4]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial & Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[5]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[6]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[7]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[8]

Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495

[9]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[10]

Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381

[11]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[12]

Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial & Management Optimization, 2005, 1 (4) : 549-563. doi: 10.3934/jimo.2005.1.549

[13]

Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial & Management Optimization, 2019, 15 (2) : 791-815. doi: 10.3934/jimo.2018071

[14]

Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141

[15]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[16]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[17]

Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417

[18]

Fengqiu Liu, Xiaoping Xue. Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 285-301. doi: 10.3934/jimo.2016.12.285

[19]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[20]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]