-
Previous Article
Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization
- NACO Home
- This Issue
-
Next Article
An improved targeted climbing algorithm for linear programs
On linear vector optimization duality in infinite-dimensional spaces
1. | Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, Germany |
References:
[1] |
R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited, Optimization Letters, DOI: 10.1007/s11590-010-0263-1.
doi: 10.1007/s11590-010-0263-1. |
[2] |
R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization," Springer-Verlag, Berlin-Heidelberg, 2009. |
[3] |
R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I), Optimization, 53 (2004), 281-300.
doi: 10.1080/02331930410001715514. |
[4] |
A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization, Journal of Optimization Theory and Applications, 82 (1994), 1-21.
doi: 10.1007/BF02191776. |
[5] |
A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization, Journal of Convex Analysis, 11 (2004), 163-178. |
[6] |
J. Jahn, Duality in vector optimization, Mathematical Programming, 25 (1983), 343-353.
doi: 10.1007/BF02594784. |
[7] |
J. Jahn, "Vector Optimization - Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004. |
[8] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970. |
[9] |
C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002. |
[10] |
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in "Nonsmooth Optimization and Related Topics (Erice 1988), " Plenum, New York, (1988), 437-458. |
show all references
References:
[1] |
R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited, Optimization Letters, DOI: 10.1007/s11590-010-0263-1.
doi: 10.1007/s11590-010-0263-1. |
[2] |
R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization," Springer-Verlag, Berlin-Heidelberg, 2009. |
[3] |
R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I), Optimization, 53 (2004), 281-300.
doi: 10.1080/02331930410001715514. |
[4] |
A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization, Journal of Optimization Theory and Applications, 82 (1994), 1-21.
doi: 10.1007/BF02191776. |
[5] |
A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization, Journal of Convex Analysis, 11 (2004), 163-178. |
[6] |
J. Jahn, Duality in vector optimization, Mathematical Programming, 25 (1983), 343-353.
doi: 10.1007/BF02594784. |
[7] |
J. Jahn, "Vector Optimization - Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004. |
[8] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970. |
[9] |
C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002. |
[10] |
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in "Nonsmooth Optimization and Related Topics (Erice 1988), " Plenum, New York, (1988), 437-458. |
[1] |
Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial and Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031 |
[2] |
Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial and Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523 |
[3] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial and Management Optimization, 2022, 18 (2) : 731-745. doi: 10.3934/jimo.2020176 |
[4] |
Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial and Management Optimization, 2005, 1 (4) : 477-486. doi: 10.3934/jimo.2005.1.477 |
[5] |
Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial and Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611 |
[6] |
Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483 |
[7] |
Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial and Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749 |
[8] |
Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial and Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174 |
[9] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[10] |
Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495 |
[11] |
Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643 |
[12] |
Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial and Management Optimization, 2019, 15 (2) : 791-815. doi: 10.3934/jimo.2018071 |
[13] |
Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381 |
[14] |
Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial and Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767 |
[15] |
Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial and Management Optimization, 2005, 1 (4) : 549-563. doi: 10.3934/jimo.2005.1.549 |
[16] |
Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141 |
[17] |
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 |
[18] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[19] |
Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417 |
[20] |
Fengqiu Liu, Xiaoping Xue. Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial and Management Optimization, 2016, 12 (1) : 285-301. doi: 10.3934/jimo.2016.12.285 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]