Citation: |
[1] |
R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited, Optimization Letters, DOI: 10.1007/s11590-010-0263-1. doi: 10.1007/s11590-010-0263-1. |
[2] |
R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization," Springer-Verlag, Berlin-Heidelberg, 2009. |
[3] |
R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I), Optimization, 53 (2004), 281-300.doi: 10.1080/02331930410001715514. |
[4] |
A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization, Journal of Optimization Theory and Applications, 82 (1994), 1-21.doi: 10.1007/BF02191776. |
[5] |
A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization, Journal of Convex Analysis, 11 (2004), 163-178. |
[6] |
J. Jahn, Duality in vector optimization, Mathematical Programming, 25 (1983), 343-353.doi: 10.1007/BF02594784. |
[7] |
J. Jahn, "Vector Optimization - Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004. |
[8] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1970. |
[9] |
C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific, Singapore, 2002. |
[10] |
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications, in "Nonsmooth Optimization and Related Topics (Erice 1988), " Plenum, New York, (1988), 437-458. |