
Previous Article
An improved targeted climbing algorithm for linear programs
 NACO Home
 This Issue

Next Article
Continuity of secondorder adjacent derivatives for weak perturbation maps in vector optimization
On linear vector optimization duality in infinitedimensional spaces
1.  Faculty of Mathematics, Chemnitz University of Technology, D09107 Chemnitz, Germany, Germany 
References:
[1] 
R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, (). doi: 10.1007/s1159001002631. 
[2] 
R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization,", SpringerVerlag, (2009). 
[3] 
R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I),, Optimization, 53 (2004), 281. doi: 10.1080/02331930410001715514. 
[4] 
A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization,, Journal of Optimization Theory and Applications, 82 (1994), 1. doi: 10.1007/BF02191776. 
[5] 
A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization,, Journal of Convex Analysis, 11 (2004), 163. 
[6] 
J. Jahn, Duality in vector optimization,, Mathematical Programming, 25 (1983), 343. doi: 10.1007/BF02594784. 
[7] 
J. Jahn, "Vector Optimization  Theory, Applications, and Extensions,", SpringerVerlag, (2004). 
[8] 
R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). 
[9] 
C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002). 
[10] 
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications,, in, (1988), 437. 
show all references
References:
[1] 
R. I. Boţ, S. M. Grad and G. Wanka, Classical linear vector optimization duality revisited,, Optimization Letters, (). doi: 10.1007/s1159001002631. 
[2] 
R. I. Boţ, S. M. Grad and G. Wanka, "Duality in Vector Optimization,", SpringerVerlag, (2009). 
[3] 
R. I. Boţ and G. Wanka, An analysis of some dual problems in multiobjective optimization (I),, Optimization, 53 (2004), 281. doi: 10.1080/02331930410001715514. 
[4] 
A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization,, Journal of Optimization Theory and Applications, 82 (1994), 1. doi: 10.1007/BF02191776. 
[5] 
A. H. Hamel, F. Heyde, A. Löhne, C. Tammer and K. Winkler, Closing the duality gap in linear vector optimization,, Journal of Convex Analysis, 11 (2004), 163. 
[6] 
J. Jahn, Duality in vector optimization,, Mathematical Programming, 25 (1983), 343. doi: 10.1007/BF02594784. 
[7] 
J. Jahn, "Vector Optimization  Theory, Applications, and Extensions,", SpringerVerlag, (2004). 
[8] 
R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970). 
[9] 
C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002). 
[10] 
C. Zălinescu, Stability for a class of nonlinear optimization problems and applications,, in, (1988), 437. 
[1] 
Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial & Management Optimization, 2017, 13 (2) : 549572. doi: 10.3934/jimo.2016031 
[2] 
Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523529. doi: 10.3934/jimo.2011.7.523 
[3] 
Tran Ninh Hoa, Ta Duy Phuong, Nguyen Dong Yen. Linear fractional vector optimization problems with many components in the solution sets. Journal of Industrial & Management Optimization, 2005, 1 (4) : 477486. doi: 10.3934/jimo.2005.1.477 
[4] 
Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial & Management Optimization, 2012, 8 (3) : 611621. doi: 10.3934/jimo.2012.8.611 
[5] 
Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483496. doi: 10.3934/jimo.2011.7.483 
[6] 
Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749764. doi: 10.3934/jimo.2012.8.749 
[7] 
Jiawei Chen, Shengjie Li, JenChih Yao. Vectorvalued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 118. doi: 10.3934/jimo.2018174 
[8] 
Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 495508. doi: 10.3934/naco.2011.1.495 
[9] 
Kequan Zhao, Xinmin Yang. Characterizations of the $E$Benson proper efficiency in vector optimization problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 643653. doi: 10.3934/naco.2013.3.643 
[10] 
Qilin Wang, S. J. Li. Higherorder sensitivity analysis in nonconvex vector optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 381392. doi: 10.3934/jimo.2010.6.381 
[11] 
Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767782. doi: 10.3934/jimo.2008.4.767 
[12] 
Giovanni P. Crespi, Ivan Ginchev, Matteo Rocca. Two approaches toward constrained vector optimization and identity of the solutions. Journal of Industrial & Management Optimization, 2005, 1 (4) : 549563. doi: 10.3934/jimo.2005.1.549 
[13] 
Marius Durea, ElenaAndreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial & Management Optimization, 2019, 15 (2) : 791815. doi: 10.3934/jimo.2018071 
[14] 
Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems  A, 2017, 37 (6) : 33273352. doi: 10.3934/dcds.2017141 
[15] 
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407416. doi: 10.3934/amc.2011.5.407 
[16] 
Guolin Yu. Global proper efficiency and vector optimization with conearcwise connected setvalued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 3544. doi: 10.3934/naco.2016.6.35 
[17] 
Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of secondorder adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 417433. doi: 10.3934/naco.2011.1.417 
[18] 
Fengqiu Liu, Xiaoping Xue. Subgradientbased neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 285301. doi: 10.3934/jimo.2016.12.285 
[19] 
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 12671276. doi: 10.3934/dcdss.2015.8.1267 
[20] 
Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with setvalued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673683. doi: 10.3934/jimo.2015.11.673 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]