2011, 1(3): 417-433. doi: 10.3934/naco.2011.1.417

Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization

1. 

College of Mathematics and Science, Chongqing University, Chongqing 400044

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

3. 

Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845

Received  April 2011 Revised  July 2011 Published  September 2011

In this paper, some properties are established for second-order adjacent derivatives of set-valued maps. Upper and lower semicontinuity and closedness are obtained for second-order adjacent derivatives of weak perturbation maps in vector optimization problems. Several examples are given for illustrating our results.
Citation: Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417
References:
[1]

A. V. Fiacco, "Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,", Academic Press, (1983). Google Scholar

[2]

J. P. Aubin and H. Frankowska, "Set-Valued Analysis,", Biekhäuser, (1990). Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley, (1984). Google Scholar

[4]

F. Ferro, An optimization result for set-valued mappings and a stability property in vector problems with constraints,, J. Optim. Theory Appl., 90 (1996), 63. doi: 10.1007/BF02192246. Google Scholar

[5]

R. B. Holmes, "Geometric Functional Analysis and Its Applications,", Springer-Verlag, (1975). Google Scholar

[6]

T. Tanino, Sensitivity analysis in multiobjective optimization,, J. Optim. Theory Appl., 56 (1988), 479. doi: 10.1007/BF00939554. Google Scholar

[7]

T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control Optim., 26 (1988), 521. doi: 10.1137/0326031. Google Scholar

[8]

H. Kuk, T. Tanino and M. Tanaka, Sensitivity analysis in parametrized convex vector optimization,, J. Math. Anal. Appl., 202 (1996), 511. doi: 10.1006/jmaa.1996.0331. Google Scholar

[9]

H. Kuk, T. Tanino and M. Tanaka, Sensitivity analysis in vector optimization,, J. Optim. Theory Appl., 89 (1996), 713. doi: 10.1007/BF02275356. Google Scholar

[10]

S. J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization,, Mathematica Applicata, 11 (1998), 49. Google Scholar

[11]

D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization,, J. Optim. Theory Appl., 70 (1991), 385. doi: 10.1007/BF00940634. Google Scholar

[12]

D. S. Shi, Sensitivity analysis in convex vector optimization,, J. Optim. Theory Appl., 77 (1993), 145. doi: 10.1007/BF00940783. Google Scholar

[13]

J. Jahn, A. A. Khan and P. Zeilinger, Second-order optimality conditions in set optimalization,, J. Optim. Theory Appl., 125 (2005), 331. doi: 10.1007/s10957-004-1841-0. Google Scholar

[14]

J. Jahn, "Vector Optimization-Theory, Applications and Extensions,", Springer, (2004). Google Scholar

[15]

V. Kalashnikov, B.Jadamba and A.A. Khan, First and second-order optimality conditions in set optimization, in "Optimization with Multivalued Mappings"(eds. S. Dempe and V. Kalashnikov),, Spring Science+Business Media, (2006), 265. Google Scholar

[16]

P. Q. Khanh and N. D. Tuan, Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization,, J. Optim.Theory Appl., 139 (2008), 243. doi: 10.1007/s10957-008-9414-2. Google Scholar

[17]

S. J. Li, K. L. Teo and X. Q. Yang, Higher-order optimality conditions for set-valued optimization,, J. Optim. Theory Appl., 137 (2008), 533. doi: 10.1007/s10957-007-9345-3. Google Scholar

[18]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization,, J. Math. Anal. Appl., 323 (2006), 1184. doi: 10.1016/j.jmaa.2005.11.035. Google Scholar

[19]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency,, Numer. Funct. Anal. Optim., 30 (2009), 849. doi: 10.1080/01630560903139540. Google Scholar

[20]

Q. L. Wang and S. J. Li, Higher-Order Weakly Generalized Adjacent Epiderivatives and Applications to Duality of Set-Valued Optimization,, J. Inequal. Appl., (2009). Google Scholar

[21]

Q. L. Wang, S. J. Li and K. L. Teo, Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization,, Optim. Lett., 4 (2010), 425. doi: 10.1007/s11590-009-0170-5. Google Scholar

[22]

D. T. Luc, "Theory of Vector Optimization,", Springer, (1989). Google Scholar

[23]

S. W. Xiang and W. S. Yin, Stability results for efficient solutions of vector optimization problems,, J. Optim. Theory Appl., 134 (2007), 385. doi: 10.1007/s10957-007-9214-0. Google Scholar

[24]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer-Verlag, (2000). Google Scholar

show all references

References:
[1]

A. V. Fiacco, "Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,", Academic Press, (1983). Google Scholar

[2]

J. P. Aubin and H. Frankowska, "Set-Valued Analysis,", Biekhäuser, (1990). Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", John Wiley, (1984). Google Scholar

[4]

F. Ferro, An optimization result for set-valued mappings and a stability property in vector problems with constraints,, J. Optim. Theory Appl., 90 (1996), 63. doi: 10.1007/BF02192246. Google Scholar

[5]

R. B. Holmes, "Geometric Functional Analysis and Its Applications,", Springer-Verlag, (1975). Google Scholar

[6]

T. Tanino, Sensitivity analysis in multiobjective optimization,, J. Optim. Theory Appl., 56 (1988), 479. doi: 10.1007/BF00939554. Google Scholar

[7]

T. Tanino, Stability and sensitivity analysis in convex vector optimization,, SIAM J. Control Optim., 26 (1988), 521. doi: 10.1137/0326031. Google Scholar

[8]

H. Kuk, T. Tanino and M. Tanaka, Sensitivity analysis in parametrized convex vector optimization,, J. Math. Anal. Appl., 202 (1996), 511. doi: 10.1006/jmaa.1996.0331. Google Scholar

[9]

H. Kuk, T. Tanino and M. Tanaka, Sensitivity analysis in vector optimization,, J. Optim. Theory Appl., 89 (1996), 713. doi: 10.1007/BF02275356. Google Scholar

[10]

S. J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization,, Mathematica Applicata, 11 (1998), 49. Google Scholar

[11]

D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization,, J. Optim. Theory Appl., 70 (1991), 385. doi: 10.1007/BF00940634. Google Scholar

[12]

D. S. Shi, Sensitivity analysis in convex vector optimization,, J. Optim. Theory Appl., 77 (1993), 145. doi: 10.1007/BF00940783. Google Scholar

[13]

J. Jahn, A. A. Khan and P. Zeilinger, Second-order optimality conditions in set optimalization,, J. Optim. Theory Appl., 125 (2005), 331. doi: 10.1007/s10957-004-1841-0. Google Scholar

[14]

J. Jahn, "Vector Optimization-Theory, Applications and Extensions,", Springer, (2004). Google Scholar

[15]

V. Kalashnikov, B.Jadamba and A.A. Khan, First and second-order optimality conditions in set optimization, in "Optimization with Multivalued Mappings"(eds. S. Dempe and V. Kalashnikov),, Spring Science+Business Media, (2006), 265. Google Scholar

[16]

P. Q. Khanh and N. D. Tuan, Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization,, J. Optim.Theory Appl., 139 (2008), 243. doi: 10.1007/s10957-008-9414-2. Google Scholar

[17]

S. J. Li, K. L. Teo and X. Q. Yang, Higher-order optimality conditions for set-valued optimization,, J. Optim. Theory Appl., 137 (2008), 533. doi: 10.1007/s10957-007-9345-3. Google Scholar

[18]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization,, J. Math. Anal. Appl., 323 (2006), 1184. doi: 10.1016/j.jmaa.2005.11.035. Google Scholar

[19]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency,, Numer. Funct. Anal. Optim., 30 (2009), 849. doi: 10.1080/01630560903139540. Google Scholar

[20]

Q. L. Wang and S. J. Li, Higher-Order Weakly Generalized Adjacent Epiderivatives and Applications to Duality of Set-Valued Optimization,, J. Inequal. Appl., (2009). Google Scholar

[21]

Q. L. Wang, S. J. Li and K. L. Teo, Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization,, Optim. Lett., 4 (2010), 425. doi: 10.1007/s11590-009-0170-5. Google Scholar

[22]

D. T. Luc, "Theory of Vector Optimization,", Springer, (1989). Google Scholar

[23]

S. W. Xiang and W. S. Yin, Stability results for efficient solutions of vector optimization problems,, J. Optim. Theory Appl., 134 (2007), 385. doi: 10.1007/s10957-007-9214-0. Google Scholar

[24]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer-Verlag, (2000). Google Scholar

[1]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[2]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[3]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[4]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[5]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[6]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[7]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[8]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[9]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[10]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[11]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[12]

Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751

[13]

Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759

[14]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[15]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[16]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[17]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[18]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[19]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[20]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]