-
Previous Article
Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects
- NACO Home
- This Issue
-
Next Article
A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem
Asymptotic strong duality
1. | School of Mathematics and Statistics, University of South Australia, SA 5095, Australia |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong |
References:
[1] |
K. M. Abadir and J. R. Magnus, "Matrix Algebra," Cambridge University Press, 2005. |
[2] |
X. X. Huang, K. L. Teo and X. Q. Yang, Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs, Acta Mathematica Sinica, English Series., 22 (2006), 1283-1296.
doi: 10.1007/s10114-005-0702-6. |
[3] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[4] |
A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function, Math. Oper. Res., 27 (2002), 775-791.
doi: 10.1287/moor.27.4.775.295. |
[5] |
C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths, J. Optimiz. Theory Appl., 135 (2007), 85-100.
doi: 10.1007/s10957-007-9225-x. |
show all references
References:
[1] |
K. M. Abadir and J. R. Magnus, "Matrix Algebra," Cambridge University Press, 2005. |
[2] |
X. X. Huang, K. L. Teo and X. Q. Yang, Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs, Acta Mathematica Sinica, English Series., 22 (2006), 1283-1296.
doi: 10.1007/s10114-005-0702-6. |
[3] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[4] |
A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function, Math. Oper. Res., 27 (2002), 775-791.
doi: 10.1287/moor.27.4.775.295. |
[5] |
C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths, J. Optimiz. Theory Appl., 135 (2007), 85-100.
doi: 10.1007/s10957-007-9225-x. |
[1] |
Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881 |
[2] |
Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial and Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65 |
[3] |
Yang Li, Liwei Zhang. A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 651-669. doi: 10.3934/jimo.2009.5.651 |
[4] |
Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial and Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157 |
[5] |
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193 |
[6] |
Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361 |
[7] |
Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495 |
[8] |
Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053 |
[9] |
Jiani Wang, Liwei Zhang. Statistical inference of semidefinite programming with multiple parameters. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1527-1538. doi: 10.3934/jimo.2019015 |
[10] |
Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 613-630. doi: 10.3934/amc.2020034 |
[11] |
Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1187-1197. doi: 10.3934/jimo.2016.12.1187 |
[12] |
Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127 |
[13] |
Aleksandar Jović. Saddle-point type optimality criteria, duality and a new approach for solving nonsmooth fractional continuous-time programming problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022025 |
[14] |
Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003 |
[15] |
Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial and Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697 |
[16] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[17] |
Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367 |
[18] |
Qingsong Duan, Mengwei Xu, Yue Lu, Liwei Zhang. A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1241-1261. doi: 10.3934/jimo.2018094 |
[19] |
Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial and Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723 |
[20] |
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]