2011, 1(3): 539-548. doi: 10.3934/naco.2011.1.539

Asymptotic strong duality

1. 

School of Mathematics and Statistics, University of South Australia, SA 5095, Australia

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Received  June 2011 Revised  August 2011 Published  September 2011

Given a nonconvex and nonsmooth optimization problem, we define a family of ``perturbed'' Lagrangians, which induce well-behaved approximations of the dual problem. Our family of approximated problems is said to verify {\em strong asymptotic duality} when the optimal dual values of the perturbed problems approach the primal optimal value. Our perturbed Lagrangians can have the same order of smoothness as the functions of the original problem, a property not shared by the classical (unperturbed) augmented Lagrangian. Therefore our proposed scheme allows the use of efficient numerical methods for solving the perturbed dual problems. We establish general conditions under which strong asymptotic duality holds, and we relate the latter with both strong duality and lower semicontinuity of the perturbation function. We illustrate our perturbed duality scheme with two important examples: Constrained Nonsmooth Optimization and Nonlinear Semidefinite programming.
Citation: Regina S. Burachik, Xiaoqi Yang. Asymptotic strong duality. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 539-548. doi: 10.3934/naco.2011.1.539
References:
[1]

K. M. Abadir and J. R. Magnus, "Matrix Algebra,", Cambridge University Press, (2005).   Google Scholar

[2]

X. X. Huang, K. L. Teo and X. Q. Yang, Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs,, Acta Mathematica Sinica, 22 (2006), 1283.  doi: 10.1007/s10114-005-0702-6.  Google Scholar

[3]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Springer, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[4]

A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function,, Math. Oper. Res., 27 (2002), 775.  doi: 10.1287/moor.27.4.775.295.  Google Scholar

[5]

C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths,, J. Optimiz. Theory Appl., 135 (2007), 85.  doi: 10.1007/s10957-007-9225-x.  Google Scholar

show all references

References:
[1]

K. M. Abadir and J. R. Magnus, "Matrix Algebra,", Cambridge University Press, (2005).   Google Scholar

[2]

X. X. Huang, K. L. Teo and X. Q. Yang, Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs,, Acta Mathematica Sinica, 22 (2006), 1283.  doi: 10.1007/s10114-005-0702-6.  Google Scholar

[3]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Springer, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[4]

A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function,, Math. Oper. Res., 27 (2002), 775.  doi: 10.1287/moor.27.4.775.295.  Google Scholar

[5]

C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths,, J. Optimiz. Theory Appl., 135 (2007), 85.  doi: 10.1007/s10957-007-9225-x.  Google Scholar

[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[6]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[7]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]