2011, 1(3): 549-561. doi: 10.3934/naco.2011.1.549

Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects

1. 

Department of Economics, Ibn Zohr University, B.P. 8658 Poste Dakhla, Agadir, Morocco

2. 

Department of Mathematics, Ibn Zohr University, Agadir, Morocco

3. 

Kaohsiung Medical University, Kaohsiung Medical University, Kaohsiung 80708

Received  May 2011 Revised  August 2011 Published  September 2011

In this paper, we study the existence and algorithmic aspect of a class of bilevel mixed equilibrium problems (BMEP) in a Banach space setting. We introduce a suitable regularization of the bilevel mixed equilibrium problems by means of an auxiliary equilibrium problem. We show that it is possible to define from the auxiliary equilibrium problems a sequence strongly convergent to a solution of the bilevel mixed equilibrium problem. The results obtained are interesting in the sense that they improve some new results on bilevel mixed equilibrium problems and give answer to some open questions in literature related to the convergence of algorithms for (BMEP).
Citation: Ouayl Chadli, Hicham Mahdioui, Jen-Chih Yao. Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 549-561. doi: 10.3934/naco.2011.1.549
References:
[1]

A. S. Antipin, The fixed points of extremal maps: computation by gradient methods,, Zh. Vychisl. Mat. Mat. Fiz., 37 (1997), 42.   Google Scholar

[2]

C. Baiocchi and A. Capelo, "Variational and Quasivariational Inequalites: Applications to Free Boundary Problems,", John Wiley and Sons, (1984).   Google Scholar

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, The Mathematics Student, 63 (1994), 123.   Google Scholar

[4]

O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities,, J. Optim. Theory. Appl., 105 (2000), 299.  doi: 10.1023/A:1004657817758.  Google Scholar

[5]

G. Cohen, Auxiliary problem principle and decomposition of optimization problems,, J. Optim. Theory. Appl., 32 (1980), 277.  doi: 10.1007/BF00934554.  Google Scholar

[6]

G. Cohen, Auxiliary problem principle extended to variational inequalities,, J. Optim. Theory. Appl., 59 (1988), 325.   Google Scholar

[7]

X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces,, J. Optim. Theory. Appl., 146 (2010), 347.  doi: 10.1007/s10957-010-9651-z.  Google Scholar

[8]

K. Goebel and W. A. Kirk, "Topics in Metric Fixed Point Theory,", Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[9]

I. V. Konnov, Generalized monotone equilibrium problems and variational inequalities,, in, (2005), 559.   Google Scholar

[10]

A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems,, J. Glob. Optim., 47 (2010), 287.  doi: 10.1007/s10898-009-9476-1.  Google Scholar

[11]

M. Patriksson, "Nonlinear Programming and Variational Inequality Problems: a unified approach,", Kluwer, (1999).   Google Scholar

[12]

E. Zeidler, "Nonlinear Functional Analysis ans Its Applications II/B. Nonlinear Monotone Operators,", Springer-Verlag, (1990).   Google Scholar

show all references

References:
[1]

A. S. Antipin, The fixed points of extremal maps: computation by gradient methods,, Zh. Vychisl. Mat. Mat. Fiz., 37 (1997), 42.   Google Scholar

[2]

C. Baiocchi and A. Capelo, "Variational and Quasivariational Inequalites: Applications to Free Boundary Problems,", John Wiley and Sons, (1984).   Google Scholar

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, The Mathematics Student, 63 (1994), 123.   Google Scholar

[4]

O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities,, J. Optim. Theory. Appl., 105 (2000), 299.  doi: 10.1023/A:1004657817758.  Google Scholar

[5]

G. Cohen, Auxiliary problem principle and decomposition of optimization problems,, J. Optim. Theory. Appl., 32 (1980), 277.  doi: 10.1007/BF00934554.  Google Scholar

[6]

G. Cohen, Auxiliary problem principle extended to variational inequalities,, J. Optim. Theory. Appl., 59 (1988), 325.   Google Scholar

[7]

X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces,, J. Optim. Theory. Appl., 146 (2010), 347.  doi: 10.1007/s10957-010-9651-z.  Google Scholar

[8]

K. Goebel and W. A. Kirk, "Topics in Metric Fixed Point Theory,", Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[9]

I. V. Konnov, Generalized monotone equilibrium problems and variational inequalities,, in, (2005), 559.   Google Scholar

[10]

A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems,, J. Glob. Optim., 47 (2010), 287.  doi: 10.1007/s10898-009-9476-1.  Google Scholar

[11]

M. Patriksson, "Nonlinear Programming and Variational Inequality Problems: a unified approach,", Kluwer, (1999).   Google Scholar

[12]

E. Zeidler, "Nonlinear Functional Analysis ans Its Applications II/B. Nonlinear Monotone Operators,", Springer-Verlag, (1990).   Google Scholar

[1]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[2]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[3]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[4]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020102

[5]

Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167

[6]

Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353

[7]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[8]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[9]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[10]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[11]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[12]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[13]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[14]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[15]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[16]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[17]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[18]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[19]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[20]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]