• Previous Article
    Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach
  • NACO Home
  • This Issue
  • Next Article
    Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks
2011, 1(4): 611-626. doi: 10.3934/naco.2011.1.611

A stochastic fluid model for on-demand peer-to-peer streaming services

1. 

Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  May 2011 Revised  August 2011 Published  November 2011

On-demand video streaming services have become popular in recent years. In current streaming services, however, the growth of user population leads to the lack of the upload rate of the video server. This mainly causes starvation in the playout buffer at a client, resulting in the degradation of user-level quality of service (QoS). In this paper, we consider an on-demand streaming service based on a peer-to-peer (P2P) technology. Focusing on the stochastic behavior of streaming data contents in the playout buffer at a client peer, we consider an analytical stochastic fluid model, which takes into account the heterogeneity among peer nodes and the peer churn. We derive the starvation probability that the playout buffer is empty. Numerical examples show that the starvation probability increases when the population of peer nodes grows. It is also shown that even when the population of peer nodes is extremely large, a small increase in the upload rate at ordinary-peer nodes significantly improves the QoS of P2P streaming services.
Citation: Shuichiro Senda, Hiroyuki Masuyama, Shoji Kasahara. A stochastic fluid model for on-demand peer-to-peer streaming services. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 611-626. doi: 10.3934/naco.2011.1.611
References:
[1]

B. Cohen, Incentives build robustness in BitTorrent,, 2003. Available from: , (). Google Scholar

[2]

F. Clevenot-Perronnin, P. Nain and K. W. Ross, Multiclass P2P networks: Static resource allocation for bandwidth for service differentiation and bandwidth diversity,, Performance Evaluation, 62 (2005), 32. Google Scholar

[3]

, eDonkey., Available from: , (). Google Scholar

[4]

R. Gaeta, M. Gribaudo, D. Manini and M. Sereno, Analysis of resource transfers in peer-to-peer file sharing applications using fluid models,, Performance Evaluation, 63 (2006), 149. Google Scholar

[5]

, Gnutella., Available from: , (). Google Scholar

[6]

S. Guha, N. Daswani and R. Jain, An experimental study of the Skype peer-to-peer VoIP system,, Proceedings of IPTPS'06, (2006). Google Scholar

[7]

X. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, A measurement study of a large-scale P2P IPTV system,, IEEE Transactions on Multimedia, 9 (2007), 1672. doi: 10.1109/TMM.2007.907451. Google Scholar

[8]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108. doi: 10.1109/MCOM.2007.374427. Google Scholar

[9]

V. G. Kulkarni, Fluid models for single buffer systems,, in, (1997), 321. Google Scholar

[10]

R. Kumar, Y. Liu and K. Ross, Stochastic fluid theory for P2P streaming systems,, Proceedings of IEEE INFOCOM, (2007), 919. Google Scholar

[11]

G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for Quasi-Birth-Death processes,, Journal of Applied Probability, 30 (1993), 650. doi: 10.2307/3214773. Google Scholar

[12]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modeling,", ASA-SIAM Series on Statistics and Applied Probability, (1999). doi: 10.1137/1.9780898719734. Google Scholar

[13]

G. Latouche and T. Takine, Markov-renewal fluid queues,, Journal of Applied Probability, 41 (2004), 746. doi: 10.1239/jap/1091543423. Google Scholar

[14]

R. M. Loynes, The stability of a queue with non-independent inter-arrival and service times,, Proc. of the Cambridge Philosophical Society: Mathematical and physical sciences, 58 (1962), 497. Google Scholar

[15]

J. Lu, Signal processing for Internet video streaming: A review,, Proc. SPIE Image and Video Communications and Processing, 3974 (2000), 246. Google Scholar

[16]

, Nielsen // Netratings Adds 'Total Minutes' Metric to Syndicated Service as Best Measure of Online Engagement., Available from: , (). Google Scholar

[17]

, PPLive., Available from: , (). Google Scholar

[18]

D. Qiu and S. Srikant, Modeling and performance analysis of BitTorrent-like peer-to-peer networks,, Proc. ACM SIGCOMM 2004, (2004), 367. Google Scholar

[19]

V. Ramaswami, Matrix analytic methods for stochastic fluid flows,, Proc. the 16th International Teletraffic Congress, (1999), 1019. Google Scholar

[20]

A. da Silva Soares, "Fluid Queues Building upon the Analogy with QBD Processes,", Doctoral Dissertation, (2005). Google Scholar

[21]

, SopCast., Available from , (). Google Scholar

[22]

T. Takine, Single-server queues with Markov-modulated arrivals and service speed,, Queueing Systems, 4 (2005), 7. doi: 10.1007/s11134-004-5553-9. Google Scholar

[23]

, YouTube., Available from , (). Google Scholar

[24]

X. Zhang, J. Liu, B. Li and T. S. P. Yum, CoolStreaming/DONet: A data-driven overlay network for peer-to-peer live media streaming,, Proc. IEEE INFOCOM 2005, 3 (2005), 2102. Google Scholar

show all references

References:
[1]

B. Cohen, Incentives build robustness in BitTorrent,, 2003. Available from: , (). Google Scholar

[2]

F. Clevenot-Perronnin, P. Nain and K. W. Ross, Multiclass P2P networks: Static resource allocation for bandwidth for service differentiation and bandwidth diversity,, Performance Evaluation, 62 (2005), 32. Google Scholar

[3]

, eDonkey., Available from: , (). Google Scholar

[4]

R. Gaeta, M. Gribaudo, D. Manini and M. Sereno, Analysis of resource transfers in peer-to-peer file sharing applications using fluid models,, Performance Evaluation, 63 (2006), 149. Google Scholar

[5]

, Gnutella., Available from: , (). Google Scholar

[6]

S. Guha, N. Daswani and R. Jain, An experimental study of the Skype peer-to-peer VoIP system,, Proceedings of IPTPS'06, (2006). Google Scholar

[7]

X. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, A measurement study of a large-scale P2P IPTV system,, IEEE Transactions on Multimedia, 9 (2007), 1672. doi: 10.1109/TMM.2007.907451. Google Scholar

[8]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108. doi: 10.1109/MCOM.2007.374427. Google Scholar

[9]

V. G. Kulkarni, Fluid models for single buffer systems,, in, (1997), 321. Google Scholar

[10]

R. Kumar, Y. Liu and K. Ross, Stochastic fluid theory for P2P streaming systems,, Proceedings of IEEE INFOCOM, (2007), 919. Google Scholar

[11]

G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for Quasi-Birth-Death processes,, Journal of Applied Probability, 30 (1993), 650. doi: 10.2307/3214773. Google Scholar

[12]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modeling,", ASA-SIAM Series on Statistics and Applied Probability, (1999). doi: 10.1137/1.9780898719734. Google Scholar

[13]

G. Latouche and T. Takine, Markov-renewal fluid queues,, Journal of Applied Probability, 41 (2004), 746. doi: 10.1239/jap/1091543423. Google Scholar

[14]

R. M. Loynes, The stability of a queue with non-independent inter-arrival and service times,, Proc. of the Cambridge Philosophical Society: Mathematical and physical sciences, 58 (1962), 497. Google Scholar

[15]

J. Lu, Signal processing for Internet video streaming: A review,, Proc. SPIE Image and Video Communications and Processing, 3974 (2000), 246. Google Scholar

[16]

, Nielsen // Netratings Adds 'Total Minutes' Metric to Syndicated Service as Best Measure of Online Engagement., Available from: , (). Google Scholar

[17]

, PPLive., Available from: , (). Google Scholar

[18]

D. Qiu and S. Srikant, Modeling and performance analysis of BitTorrent-like peer-to-peer networks,, Proc. ACM SIGCOMM 2004, (2004), 367. Google Scholar

[19]

V. Ramaswami, Matrix analytic methods for stochastic fluid flows,, Proc. the 16th International Teletraffic Congress, (1999), 1019. Google Scholar

[20]

A. da Silva Soares, "Fluid Queues Building upon the Analogy with QBD Processes,", Doctoral Dissertation, (2005). Google Scholar

[21]

, SopCast., Available from , (). Google Scholar

[22]

T. Takine, Single-server queues with Markov-modulated arrivals and service speed,, Queueing Systems, 4 (2005), 7. doi: 10.1007/s11134-004-5553-9. Google Scholar

[23]

, YouTube., Available from , (). Google Scholar

[24]

X. Zhang, J. Liu, B. Li and T. S. P. Yum, CoolStreaming/DONet: A data-driven overlay network for peer-to-peer live media streaming,, Proc. IEEE INFOCOM 2005, 3 (2005), 2102. Google Scholar

[1]

Shunfu Jin, Yuan Zhao, Wuyi Yue, Lingling Chen. Performance analysis of a P2P storage system with a lazy replica repair policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 151-166. doi: 10.3934/jimo.2014.10.151

[2]

Vinay Aggarwal, Anja Feldmann. Locality-aware P2P query search with ISP collaboration. Networks & Heterogeneous Media, 2008, 3 (2) : 251-265. doi: 10.3934/nhm.2008.3.251

[3]

Hugo Beirão da Veiga. Turbulence models, $p-$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 769-783. doi: 10.3934/cpaa.2009.8.769

[4]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[5]

Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024

[6]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[7]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

[8]

Duanzhi Zhang. $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurface in R2n. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 947-964. doi: 10.3934/dcds.2013.33.947

[9]

Fan Ding, Yi Liu, Shicheng Wang, Jiangang Yao. Extending $T^p$ automorphisms over $\mathbb{R}^{p+2}$ and realizing DE attractors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1639-1655. doi: 10.3934/dcds.2012.32.1639

[10]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[11]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[12]

Eric Férard. On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 497-509. doi: 10.3934/amc.2014.8.497

[13]

Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821

[14]

Marcin Dumnicki, Tomasz Szemberg, Halszka Tutaj-Gasińska. New results on fat points schemes in $\mathbb{P}^2$. Electronic Research Announcements, 2013, 20: 51-54. doi: 10.3934/era.2013.20.51

[15]

Zheng Zhou. Layered solutions in $R^2$ for a class of $p$-Laplace equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 819-837. doi: 10.3934/cpaa.2010.9.819

[16]

Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111

[17]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[18]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[19]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[20]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]