• Previous Article
    Controlling delay differentiation with priority jumps: Analytical study
  • NACO Home
  • This Issue
  • Next Article
    Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks
2011, 1(4): 639-656. doi: 10.3934/naco.2011.1.639

Multiserver retrial queues with after-call work

1. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

2. 

Department of Computer Science, Gunma University, Kiryu-City, 376-8515

Received  June 2011 Revised  August 2011 Published  November 2011

This paper considers a multiserver queueing system with finite capacity. Customers that find the service facility being fully occupied are blocked and enter a virtual waiting room (called orbit). Blocked customers stay in the orbit for an exponentially distributed time and retry to occupy an idle server again. After completing a service, the server starts an additional job that we call an after-call work. We formulate the queueing system using a continuous-time level-dependent quasi-birth-and-death process, for which a sufficient condition for the ergodicity is derived. We obtain an approximation to the stationary distribution by a direct truncation method whose truncation point is simply determined using an asymptotic analysis of a single server retrial queue. Some numerical examples are presented in order to show the influence of parameters on the performance of the system.
Citation: Tuan Phung-Duc, Ken’ichi Kawanishi. Multiserver retrial queues with after-call work. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 639-656. doi: 10.3934/naco.2011.1.639
References:
[1]

J. R. Artalejo and M. Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue,, Annals of Operations Research, 116 (2002), 41.  doi: 10.1023/A:1021359709489.  Google Scholar

[2]

J. R. Artalejo and V. Pla, On the impact of customer balking, impatience and retrials in telecommunication systems,, Computers & Mathematics with Applications, 57 (2009), 217.  doi: 10.1016/j.camwa.2008.10.084.  Google Scholar

[3]

L. Bright and G. P. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Stochastic Models, 11 (1995), 497.  doi: 10.1080/15326349508807357.  Google Scholar

[4]

J. E. Diamond and A. S. Alfa, The MAP/PH/1 retrial queue,, Stochastic Models, 14 (1998), 1151.  doi: 10.1080/15326349808807518.  Google Scholar

[5]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[6]

M. J. Fischer, D. A. Garbin and A. Gharakhanian, Performance modeling of distributed automatic call distribution systems,, Telecommunications Systems, 9 (1998), 133.  doi: 10.1023/A:1019139721840.  Google Scholar

[7]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: tutorial, review, and research prospects,, Manufacturing & Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[8]

W. M. Jolley and R. J. Harris, Analysis of post-call activity in queueing systems,, Proceedings of the 9th International Teletraffic Congress, (1979), 1.   Google Scholar

[9]

K. Kawanishi, On the counting process for a class of Markovian arrival processes with an application to a queueing system,, Queueing Systems, 49 (2005), 93.  doi: 10.1007/s11134-005-6478-7.  Google Scholar

[10]

J. Kim, B. Kim and S.-S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007), 1111.  doi: 10.1239/jap/1197908829.  Google Scholar

[11]

G. Koole and A. Mandelbaum, Queueing models of call centers: an introduction,, Annals of Operations Research, 113 (2002), 41.  doi: 10.1023/A:1020949626017.  Google Scholar

[12]

J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961), 383.  doi: 10.1287/opre.9.3.383.  Google Scholar

[13]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,", Johns Hopkins University Press, (1981).   Google Scholar

[14]

M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990), 169.  doi: 10.1007/BF01158473.  Google Scholar

[15]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/$c$/$c+r$ retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 (): 517.  doi: 10.3934/jimo.2010.6.517.  Google Scholar

[16]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, (): 46.  doi: 10.1145/1837856.1837864.  Google Scholar

[17]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A matrix continued fraction approach to multi-server retrial queues,, to appear in Annals of Operations Research, (2011).  doi: 10.1007/s10479-011-0840-4.  Google Scholar

[18]

R. L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity and Markov processes,, Mathematical Proceedings of the Cambridge Philosophical Society, 78 (1975), 125.  doi: 10.1017/S0305004100051562.  Google Scholar

show all references

References:
[1]

J. R. Artalejo and M. Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue,, Annals of Operations Research, 116 (2002), 41.  doi: 10.1023/A:1021359709489.  Google Scholar

[2]

J. R. Artalejo and V. Pla, On the impact of customer balking, impatience and retrials in telecommunication systems,, Computers & Mathematics with Applications, 57 (2009), 217.  doi: 10.1016/j.camwa.2008.10.084.  Google Scholar

[3]

L. Bright and G. P. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Stochastic Models, 11 (1995), 497.  doi: 10.1080/15326349508807357.  Google Scholar

[4]

J. E. Diamond and A. S. Alfa, The MAP/PH/1 retrial queue,, Stochastic Models, 14 (1998), 1151.  doi: 10.1080/15326349808807518.  Google Scholar

[5]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[6]

M. J. Fischer, D. A. Garbin and A. Gharakhanian, Performance modeling of distributed automatic call distribution systems,, Telecommunications Systems, 9 (1998), 133.  doi: 10.1023/A:1019139721840.  Google Scholar

[7]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: tutorial, review, and research prospects,, Manufacturing & Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[8]

W. M. Jolley and R. J. Harris, Analysis of post-call activity in queueing systems,, Proceedings of the 9th International Teletraffic Congress, (1979), 1.   Google Scholar

[9]

K. Kawanishi, On the counting process for a class of Markovian arrival processes with an application to a queueing system,, Queueing Systems, 49 (2005), 93.  doi: 10.1007/s11134-005-6478-7.  Google Scholar

[10]

J. Kim, B. Kim and S.-S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007), 1111.  doi: 10.1239/jap/1197908829.  Google Scholar

[11]

G. Koole and A. Mandelbaum, Queueing models of call centers: an introduction,, Annals of Operations Research, 113 (2002), 41.  doi: 10.1023/A:1020949626017.  Google Scholar

[12]

J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961), 383.  doi: 10.1287/opre.9.3.383.  Google Scholar

[13]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,", Johns Hopkins University Press, (1981).   Google Scholar

[14]

M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990), 169.  doi: 10.1007/BF01158473.  Google Scholar

[15]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/$c$/$c+r$ retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 (): 517.  doi: 10.3934/jimo.2010.6.517.  Google Scholar

[16]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, (): 46.  doi: 10.1145/1837856.1837864.  Google Scholar

[17]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A matrix continued fraction approach to multi-server retrial queues,, to appear in Annals of Operations Research, (2011).  doi: 10.1007/s10479-011-0840-4.  Google Scholar

[18]

R. L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity and Markov processes,, Mathematical Proceedings of the Cambridge Philosophical Society, 78 (1975), 125.  doi: 10.1017/S0305004100051562.  Google Scholar

[1]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[2]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[3]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[4]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[5]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[6]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[7]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[10]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[11]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[15]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[16]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[19]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[20]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]