• Previous Article
    Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints
  • NACO Home
  • This Issue
  • Next Article
    Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions
2011, 1(1): 71-82. doi: 10.3934/naco.2011.1.71

A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

2. 

College of Mathematics and Econometrics, Hunan University, Changsha, 410082, China

Received  October 2010 Revised  October 2010 Published  February 2011

In this paper, we propose a descent derivative-free method for solving symmetric nonlinear equations. The method is an extension of the modified Fletcher-Reeves (MFR) method proposed by Zhang, Zhou and Li [25] to symmetric nonlinear equations. It can be applied to solve large-scale symmetric nonlinear equations due to lower storage requirement. An attractive property of the method is that the directions generated by the method are descent for the residual function. By the use of some backtracking line search technique, the generated sequence of function values is decreasing. Under appropriate conditions, we show that the proposed method is globally convergent. The preliminary numerical results show that the method is practically effective.
Citation: Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71
References:
[1]

M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search,, IMA Journal of Numerical Analysis, 5 (1985), 121.  doi: 10.1093/imanum/5.1.121.  Google Scholar

[2]

S. Bellavia and B. Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations,, SIAM Journal on Scientific Computing, 23 (2001), 940.  doi: 10.1137/S1064827599363976.  Google Scholar

[3]

A. Griewank, The “global” convergence of Broyden-like methods with suitable line search,, Journal of Australia Mathematical Society, 28 (1986), 75.   Google Scholar

[4]

W. Cheng and D. H. Li, A derivative-free nonmonotone line search and its application to the spectral residual method,, IMA Journal of Numerical Analysis, 29 (2009), 814.  doi: 10.1093/imanum/drn019.  Google Scholar

[5]

Y. H. Dai and Y. Yuan, Convergence of the Fletcher-Reeves method under a generalized Wolfe search,, Journal of Computational Mathematics, 2 (1996), 142.   Google Scholar

[6]

Y. H. Dai and Y. Yuan, Convergence properties of the Fletcher-Reeves method,, IMA Journal of Numerical Analysis, 16 (1996), 155.  doi: 10.1093/imanum/16.2.155.  Google Scholar

[7]

Y. H. Dai and Y. Yuan, "Nonlinear Conjugate Gradient Methods,", Shanghai Science and Technology Publisher, (2000).   Google Scholar

[8]

R. Fletcher and C. Reeves, Function minimization by conjugate gradients,, Computer Journal, 7 (1964), 149.  doi: 10.1093/comjnl/7.2.149.  Google Scholar

[9]

J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization,, SIAM Journal on Optimization, 2 (1992), 21.  doi: 10.1137/0802003.  Google Scholar

[10]

G. Z. Gu, D. H. Li, L. Qi and S. Z. Zhou, Descent directions of Quasi-Newton methods for symmetric nonlinear equations,, SIAM Journal on Numerical Analysis, 40 (2003), 1763.  doi: 10.1137/S0036142901397423.  Google Scholar

[11]

J. Y. Han, G. H. Liu and H. X. Yin, Convergence properties of conjugate gradient methods with strong Wolfe linesearch,, Systems Science and Mathematical Science, 11 (1998), 112.   Google Scholar

[12]

W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.   Google Scholar

[13]

Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods,, Journal of Optimization Theory and Applications, 71 (1991), 399.  doi: 10.1007/BF00939927.  Google Scholar

[14]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems,, Optimization Methods and Software, 18 (2003), 583.  doi: 10.1080/10556780310001610493.  Google Scholar

[15]

W. La Cruz, J.M. Martínez and M. Raydan, Spectral resdual method without gradient information for solving large-scale nonlinear systems of equations,, Mathematics of Computation, 75 (2006), 1429.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[16]

G. H. Liu, J. Y. Han and H. X. Yin, Global convergence of the Fletcher-Reeves algorithm with an inexact line search,, Applied Mathematics, 10 (1995), 75.   Google Scholar

[17]

D. H. Li and W. Cheng, Recent progress in the global convergence of quasi-Newton methods for nonlinear equations,, Hokkaido Journal of Mathematics, 36 (2007), 729.   Google Scholar

[18]

D. H. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric nonlinear equations,, SIAM Journal on Numerical Analysis, 37 (1999), 152.  doi: 10.1137/S0036142998335704.  Google Scholar

[19]

D. H. Li and M. Fukushima, A derivative-free line search and global convergence of Broyden-like methods for nonlinear equations,, Optimization Methods and Software, 13 (2000), 181.  doi: 10.1080/10556780008805782.  Google Scholar

[20]

Q. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations,, IMA Journal of Numerical Analysis, ().   Google Scholar

[21]

M. J. D. Powell, Some convergence properties of the conjugate gradient method,, Mathematical Programming, 11 (1976), 42.  doi: 10.1007/BF01580369.  Google Scholar

[22]

M. J . D. Powell, Restart procedures of the conjugate gradient method,, Mathematical Programming, 2 (1977), 241.  doi: 10.1007/BF01593790.  Google Scholar

[23]

Q. Yan, X. Z. Peng and D. H. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations,, Journal of Computational and Applied Mathematics, 234 (2010), 649.  doi: 10.1016/j.cam.2010.01.001.  Google Scholar

[24]

J. Zhang and D. H. Li, A norm descent BFGS method for solving KKT systems of symmetric variational inequality problems,, Optimization Methods and Software, 22 (2007), 237.  doi: 10.1080/10556780500397074.  Google Scholar

[25]

L. Zhang, W. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search,, Numerische Mathematik, 104 (2006), 561.  doi: 10.1007/s00211-006-0028-z.  Google Scholar

[26]

W. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations,, Journal of Computational Mathematics, 25 (2007), 89.   Google Scholar

[27]

W. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations,, Mathematics of Computation, 77 (2008), 2231.  doi: 10.1090/S0025-5718-08-02121-2.  Google Scholar

[28]

G. Zoutendijk, Nonlinear Programming, Computational Methods,, in, (1970), 37.   Google Scholar

show all references

References:
[1]

M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search,, IMA Journal of Numerical Analysis, 5 (1985), 121.  doi: 10.1093/imanum/5.1.121.  Google Scholar

[2]

S. Bellavia and B. Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations,, SIAM Journal on Scientific Computing, 23 (2001), 940.  doi: 10.1137/S1064827599363976.  Google Scholar

[3]

A. Griewank, The “global” convergence of Broyden-like methods with suitable line search,, Journal of Australia Mathematical Society, 28 (1986), 75.   Google Scholar

[4]

W. Cheng and D. H. Li, A derivative-free nonmonotone line search and its application to the spectral residual method,, IMA Journal of Numerical Analysis, 29 (2009), 814.  doi: 10.1093/imanum/drn019.  Google Scholar

[5]

Y. H. Dai and Y. Yuan, Convergence of the Fletcher-Reeves method under a generalized Wolfe search,, Journal of Computational Mathematics, 2 (1996), 142.   Google Scholar

[6]

Y. H. Dai and Y. Yuan, Convergence properties of the Fletcher-Reeves method,, IMA Journal of Numerical Analysis, 16 (1996), 155.  doi: 10.1093/imanum/16.2.155.  Google Scholar

[7]

Y. H. Dai and Y. Yuan, "Nonlinear Conjugate Gradient Methods,", Shanghai Science and Technology Publisher, (2000).   Google Scholar

[8]

R. Fletcher and C. Reeves, Function minimization by conjugate gradients,, Computer Journal, 7 (1964), 149.  doi: 10.1093/comjnl/7.2.149.  Google Scholar

[9]

J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization,, SIAM Journal on Optimization, 2 (1992), 21.  doi: 10.1137/0802003.  Google Scholar

[10]

G. Z. Gu, D. H. Li, L. Qi and S. Z. Zhou, Descent directions of Quasi-Newton methods for symmetric nonlinear equations,, SIAM Journal on Numerical Analysis, 40 (2003), 1763.  doi: 10.1137/S0036142901397423.  Google Scholar

[11]

J. Y. Han, G. H. Liu and H. X. Yin, Convergence properties of conjugate gradient methods with strong Wolfe linesearch,, Systems Science and Mathematical Science, 11 (1998), 112.   Google Scholar

[12]

W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.   Google Scholar

[13]

Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods,, Journal of Optimization Theory and Applications, 71 (1991), 399.  doi: 10.1007/BF00939927.  Google Scholar

[14]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems,, Optimization Methods and Software, 18 (2003), 583.  doi: 10.1080/10556780310001610493.  Google Scholar

[15]

W. La Cruz, J.M. Martínez and M. Raydan, Spectral resdual method without gradient information for solving large-scale nonlinear systems of equations,, Mathematics of Computation, 75 (2006), 1429.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[16]

G. H. Liu, J. Y. Han and H. X. Yin, Global convergence of the Fletcher-Reeves algorithm with an inexact line search,, Applied Mathematics, 10 (1995), 75.   Google Scholar

[17]

D. H. Li and W. Cheng, Recent progress in the global convergence of quasi-Newton methods for nonlinear equations,, Hokkaido Journal of Mathematics, 36 (2007), 729.   Google Scholar

[18]

D. H. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric nonlinear equations,, SIAM Journal on Numerical Analysis, 37 (1999), 152.  doi: 10.1137/S0036142998335704.  Google Scholar

[19]

D. H. Li and M. Fukushima, A derivative-free line search and global convergence of Broyden-like methods for nonlinear equations,, Optimization Methods and Software, 13 (2000), 181.  doi: 10.1080/10556780008805782.  Google Scholar

[20]

Q. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations,, IMA Journal of Numerical Analysis, ().   Google Scholar

[21]

M. J. D. Powell, Some convergence properties of the conjugate gradient method,, Mathematical Programming, 11 (1976), 42.  doi: 10.1007/BF01580369.  Google Scholar

[22]

M. J . D. Powell, Restart procedures of the conjugate gradient method,, Mathematical Programming, 2 (1977), 241.  doi: 10.1007/BF01593790.  Google Scholar

[23]

Q. Yan, X. Z. Peng and D. H. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations,, Journal of Computational and Applied Mathematics, 234 (2010), 649.  doi: 10.1016/j.cam.2010.01.001.  Google Scholar

[24]

J. Zhang and D. H. Li, A norm descent BFGS method for solving KKT systems of symmetric variational inequality problems,, Optimization Methods and Software, 22 (2007), 237.  doi: 10.1080/10556780500397074.  Google Scholar

[25]

L. Zhang, W. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search,, Numerische Mathematik, 104 (2006), 561.  doi: 10.1007/s00211-006-0028-z.  Google Scholar

[26]

W. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations,, Journal of Computational Mathematics, 25 (2007), 89.   Google Scholar

[27]

W. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations,, Mathematics of Computation, 77 (2008), 2231.  doi: 10.1090/S0025-5718-08-02121-2.  Google Scholar

[28]

G. Zoutendijk, Nonlinear Programming, Computational Methods,, in, (1970), 37.   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[15]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[18]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[19]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

 Impact Factor: 

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]