Citation: |
[1] |
F. Baccelli and P. Brémaud, "Elements of Queueing Theory: Palm-Martingale Calculus and Stochastic Recurrences,'' 2nd edition, Springer-Verlag, Berlin, 2003. |
[2] |
V. E. Beneš, On queues with Poisson arrivals, Ann. Math. Statist., 28 (1957), 670-677.doi: 10.1214/aoms/1177706878. |
[3] |
P. Brémaud, "Point Processes and Queues: Martingale Dynamics,'' Springer-Verlag, New York, 1981. |
[4] |
P. Brémaud, Characteristics of queueing systems observed at events and the connection between stochastic intensity and Palm probability, Queueing Systems Theory Appl., 5 (1989), 99-111.doi: 10.1007/BF01149188. |
[5] |
R. B. Cooper and S. C. Niu, Beneš's formula for M/G/1-FIFO ''explained'' by preemptive-resume LIFO, J. Appl. Probab., 23 (1986), 550-554.doi: 10.2307/3214199. |
[6] |
D. Fakinos, The G/G/1 queueing system with a particular queue discipline, J. Roy. Statist. Soc. Ser. B, 43 (1981), 190-196. |
[7] |
D. Fakinos, The single-server queue with service depending on queue size with the preemptive-resume last-come-first-served queue discipline, J. Appl. Probab., 24 (1987), 758-767.doi: 10.2307/3214105. |
[8] |
F. P. Kelly, The departure process from a queueing system, Math. Proc. Cambridge Philos. Soc., 80 (1976), 283-285.doi: 10.1017/S0305004100052919. |
[9] |
R. M. Loynes, The stability of a queue with non-independent interarrival and service times, Proc. Cambridge Philos. Soc., 58 (1962), 497-520.doi: 10.1017/S0305004100036781. |
[10] |
B. Melamed and W. Whitt, On arrivals that see time averages: A martingale approach, J. Appl. Probab., 27 (1990), 376-384.doi: 10.2307/3214656. |
[11] |
N. Miyoshi, On the stationary workload distribution of work-conserving single-server queues: A general formula via stochastic intensity, J. Appl. Probab., 38 (2001), 793-798.doi: 10.1239/jap/1005091044. |
[12] |
F. Papangelou, Integrability of expected increments of point processes and a related random change of scale, Trans. Amer. Math. Soc., 165 (1972), 483-506.doi: 10.1090/S0002-9947-1972-0314102-9. |
[13] |
T. Takine, Matrix product-form solution for an LCFS-PR single-server queue with multiple arrival streams governed by a Markov chain, Queueing Syst., 42 (2002), 131-151.doi: 10.1023/A:1020152920794. |
[14] |
G. Yamazaki, The GI/G/1 queue with last-come-first-served, Ann. Inst. Statist. Math., 34 (1982), 599-604.doi: 10.1007/BF02481057. |
[15] |
G. Yamazaki, Invariance relations of GI/G/1 queueing systems with preemptive-resume last-come-first-served queue discipline, J. Oper. Res. Soc. Japan, 27 (1984), 338-347. |