2011, 1(4): 763-780. doi: 10.3934/naco.2011.1.763

Markovian characterization of node lifetime in a time-driven wireless sensor network

1. 

Department of Mathematics and Computer Science, University of Balearic Islands, 07122, Palma, Spain

Received  June 2011 Revised  August 2011 Published  November 2011

While feeling honoured for being invited to write a paper dedicated to Prof. Yutaka Takahashi, I was enthusiastically wondering how to connect my current research on sensor networks to his excellent professional profile. The question or, better, the answer, was not simple. Considering, for instance, the field of Markov chains, as far as I know there are hardly works in literature that use this well-known modelling paradigm to represent the operational states of a sensor network. However, in a very recent work on time-driven sensor networks, I proposed the exponential randomization of the sense-and-transmit process, in order to avoid tight synchronization requirements while preserving good expectations in terms of lifetime and reconstruction quality. But$\ldots{}$oh, I said exponential, that's the connection! $\ldots{}$ So, specifically, in this paper a Markov chain is constructed to characterize the activity of a node in a time-driven sensor network based on stochastic (exponential) sampling. Since this activity can be translated to energy consumption, the exact solution to the Markov chain yields the complete statistical distribution of node lifetime. The effects of several parameters on the average and variance of this lifetime are also analyzed in detail.
Citation: Sebastià Galmés. Markovian characterization of node lifetime in a time-driven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763-780. doi: 10.3934/naco.2011.1.763
References:
[1]

K. Akkaya and M. Younis, A survey on routing protocols for wireless sensor networks,, Ad Hoc Networks, 3 (2005), 325.   Google Scholar

[2]

A. V. Balakrishnan, On the problem of time jitter in sampling,, IRE Trans. Inf. Theory, 8 (1962), 226.   Google Scholar

[3]

G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, "Queueing Networks and Markov Chains,", 2nd edition, (1998).  doi: 10.1002/0471200581.  Google Scholar

[4]

R. L. Cook, Stochastic sampling in computer graphics,, ACM Trans. on Graphics, 5 (1986), 51.  doi: 10.1145/7529.8927.  Google Scholar

[5]

S. Galmés, System design issues in time-driven sensor networks based on stochastic sampling,, Simulation Modelling, 19 (2011), 1530.  doi: 10.1016/j.simpat.2011.04.006.  Google Scholar

[6]

S. Galmés and R. Puigjaner, Randomized data-gathering protocol for time-driven sensor networks,, Computer Networks Journal, 55 (2011), 3863.  doi: 10.1016/j.comnet.2011.08.002.  Google Scholar

[7]

J. R. Higgins, "Sampling Theory in Fourier and Signal Analysis: Foundations,", Oxford University Press, (1996).   Google Scholar

[8]

H. Karl and A. Willig, "Protocols and Architectures for Wireless Sensor Networks,", Wiley, (2005).   Google Scholar

[9]

B. Krishnamachari, "Networking Wireless Sensors,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511541025.  Google Scholar

[10]

A. Kumar, P. Ishwar and K. Ramchandran, On distributed sampling of smooth non-bandlimited fields,, in ''Proc. of the Third International Symposium on Information Processing in Sensor Networks, (2004), 89.   Google Scholar

[11]

A. Kumar, P. Ishwar and K. Ramchandran, On distributed sampling of bandlimited and non-bandlimited sensor fields,, in ''Proc. of IEEE International Conference on Acoustics, (2004).   Google Scholar

[12]

, "OMNeT++ Community Site," OMNeT++ 3.x documentation and tutorials,, 2005. Available from: , ().   Google Scholar

[13]

A. V. Oppenheim, A. S. Willsky and I. T. Young, "Signals and Systems,", Prentice-Hall, (1983).   Google Scholar

[14]

G. Reise and G. Matz, Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces,, in ''Proc. of IEEE International Conference on Acoustics, (2009), 2061.   Google Scholar

[15]

M. L. Santamaría, S. Galmés and R. Puigjaner, Simulated annealing approach to optimizing the lifetime of sparse time-driven sensor networks,, in ''Proc. of 2009 IEEE International Symposium on Modeling, (2009), 193.   Google Scholar

[16]

I. Stojmenovic, "Handbook of Sensor Networks: Algorithms and Architectures,", Wiley, (2005).   Google Scholar

[17]

S. Tilak, N. Abu-Ghazaleh and W. R. Heinzelman, A taxonomy of wireless micro-sensor network models,, ACM Mobile Computing and Communications Review (MC2R), 6 (2002), 28.   Google Scholar

[18]

Y. Yu, V. K. Prasanna and B. Krishnamachari, Energy minimization for real-time data gathering in wireless sensor networks,, IEEE Trans. on Wireless Communications, 5 (2006), 3087.  doi: 10.1109/TWC.2006.04709.  Google Scholar

show all references

References:
[1]

K. Akkaya and M. Younis, A survey on routing protocols for wireless sensor networks,, Ad Hoc Networks, 3 (2005), 325.   Google Scholar

[2]

A. V. Balakrishnan, On the problem of time jitter in sampling,, IRE Trans. Inf. Theory, 8 (1962), 226.   Google Scholar

[3]

G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, "Queueing Networks and Markov Chains,", 2nd edition, (1998).  doi: 10.1002/0471200581.  Google Scholar

[4]

R. L. Cook, Stochastic sampling in computer graphics,, ACM Trans. on Graphics, 5 (1986), 51.  doi: 10.1145/7529.8927.  Google Scholar

[5]

S. Galmés, System design issues in time-driven sensor networks based on stochastic sampling,, Simulation Modelling, 19 (2011), 1530.  doi: 10.1016/j.simpat.2011.04.006.  Google Scholar

[6]

S. Galmés and R. Puigjaner, Randomized data-gathering protocol for time-driven sensor networks,, Computer Networks Journal, 55 (2011), 3863.  doi: 10.1016/j.comnet.2011.08.002.  Google Scholar

[7]

J. R. Higgins, "Sampling Theory in Fourier and Signal Analysis: Foundations,", Oxford University Press, (1996).   Google Scholar

[8]

H. Karl and A. Willig, "Protocols and Architectures for Wireless Sensor Networks,", Wiley, (2005).   Google Scholar

[9]

B. Krishnamachari, "Networking Wireless Sensors,", Cambridge University Press, (2005).  doi: 10.1017/CBO9780511541025.  Google Scholar

[10]

A. Kumar, P. Ishwar and K. Ramchandran, On distributed sampling of smooth non-bandlimited fields,, in ''Proc. of the Third International Symposium on Information Processing in Sensor Networks, (2004), 89.   Google Scholar

[11]

A. Kumar, P. Ishwar and K. Ramchandran, On distributed sampling of bandlimited and non-bandlimited sensor fields,, in ''Proc. of IEEE International Conference on Acoustics, (2004).   Google Scholar

[12]

, "OMNeT++ Community Site," OMNeT++ 3.x documentation and tutorials,, 2005. Available from: , ().   Google Scholar

[13]

A. V. Oppenheim, A. S. Willsky and I. T. Young, "Signals and Systems,", Prentice-Hall, (1983).   Google Scholar

[14]

G. Reise and G. Matz, Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces,, in ''Proc. of IEEE International Conference on Acoustics, (2009), 2061.   Google Scholar

[15]

M. L. Santamaría, S. Galmés and R. Puigjaner, Simulated annealing approach to optimizing the lifetime of sparse time-driven sensor networks,, in ''Proc. of 2009 IEEE International Symposium on Modeling, (2009), 193.   Google Scholar

[16]

I. Stojmenovic, "Handbook of Sensor Networks: Algorithms and Architectures,", Wiley, (2005).   Google Scholar

[17]

S. Tilak, N. Abu-Ghazaleh and W. R. Heinzelman, A taxonomy of wireless micro-sensor network models,, ACM Mobile Computing and Communications Review (MC2R), 6 (2002), 28.   Google Scholar

[18]

Y. Yu, V. K. Prasanna and B. Krishnamachari, Energy minimization for real-time data gathering in wireless sensor networks,, IEEE Trans. on Wireless Communications, 5 (2006), 3087.  doi: 10.1109/TWC.2006.04709.  Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[16]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]