Citation: |
[1] |
B. Chen and P. T. Harker, A non-interior point continuation method for linear complementarity problems, SIAM Journal on Matrix Analysis and Applications, 14 (1993), 1168-1190.doi: 10.1137/0614081. |
[2] |
C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear complementarity problems, Mathematical Programming, 71 (1995), 51-69.doi: 10.1007/BF01592244. |
[3] |
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comp. Optim. and Appl., 5 (1996), 97-138.doi: 10.1007/BF00249052. |
[4] |
X. J. Chen, Smoothing methods for complementarity problems and their applications: a survey, J. Oper. Res. Soc. Japan, 43 (2000), 32-47.doi: 10.1016/S0453-4514(00)88750-5. |
[5] |
X. J. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res., 30 (2005), 1022-1038.doi: 10.1287/moor.1050.0160. |
[6] |
F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II," Springer-Verlag, New York, 2003. |
[7] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic variational inequalities, Mathematical Programming, 84 (1999), 313-333.doi: 10.1007/s101070050024. |
[8] |
H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 53 (2008), 1462-1475.doi: 10.1109/TAC.2008.925853. |
[9] |
C. Kanzow, "Some Tools Allowing Interior-Point Methods to Become Noninterior," Technical Report, Institute of Applied Mathematics, University of Hamburg, Germany, 1994. |
[10] |
J. S. Pang, Error bounds in mathematical programming, Mathematical Programming, 79 (1997), 299-332.doi: 10.1007/BF02614322. |
[11] |
S. M. Robinson, Some continuity properties of polyhedral multifunctions, Mathematical Programming Study, 14 (1981), 206-214. |
[12] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Berlin Heidelberg, 1998. |
[13] |
A. Shapiro, D. Dentcheva and A. Ruszczynski, "Lectures on Stochastic Programming: Modeling and Theory," SIAM, Philadelphia, 2009.doi: 10.1137/1.9780898718751. |
[14] |
S. Smale, Algorithms for solving equations, in "Proceedings of the International Congress of Mathematicians," Ameri. Math. Sot., Providence, 1987. |
[15] |
J. Takaki and N. Yamashita, A derivative-free trust-region algorithm for unconstrained optimization with controlled error, Numerical Algebra, Control and Optimization, 1 (2011), 117-145.doi: 10.3934/naco.2011.1.117. |
[16] |
H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming, 119 (2009), 371-401.doi: 10.1007/s10107-008-0214-0. |
[17] |
H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems, Asian Pacific Journal of Operations Research, 27 (2010), 103-119.doi: 10.1142/S0217595910002569. |
[18] |
Y. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares, Numerical Algebra, Control and Optimization, 1 (2011), 15-34.doi: 10.3934/naco.2011.1.15. |
[19] |
L. Zhang, J. Zhang and Y. Wu, On the convergence of coderivative of SAA solution mapping for a parametric stochastic generalized equation, Set-valued Anal., 19 (2011), 107-134.doi: 10.1007/s11228-010-0141-0. |