\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A filter successive linear programming method for nonlinear semidefinite programming problems

Abstract Related Papers Cited by
  • In this paper we present a successive linear programming method with filter technique for nonlinear semidefinite programming. Such a method is characterized by use of the dominance concept of multiobjective optimization,~instead of a penalty parameter. The Successive Linear Programming with Filter (SLP-Filter) was used to solve the nonlinear programming (see [8]). In this paper, we extend it to deal with nonlinear semidefinite programming, and prove the convergence of the SLP-Filter for nonlinear semidefinite programming. We report numerical experiments to show the validity of the SLP-Filter method for nonlinear semidefinite programming.
    Mathematics Subject Classification: 65k05, 90c30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Auslender and H. Ramírez, Penalty and barrier methods for convex semidefinite progranmming, Mathematical Methods of Operations Research, 63 (2006), 195-219.doi: 10.1007/s00186-005-0054-0.

    [2]

    M. S. Bazaraa and C. M. Shetty, "Nonlinear Programming Theory and Algorithms," John Wiley & Sons, New York, 1979.

    [3]

    C. Chin and R. Flercher, On the global convergence of an SLP-Filter algorithm that takes EQP steps, SIAM Journal on Optimization, 96 (2003), 161-177.

    [4]

    R. Correa and H. Ramírez, A global algorithm for nonlinear semidefinite programming, Math. Program., 15 (2004), 303-318.

    [5]

    B. Fares, D. Noll and P. Apkarian, Robust control via sequential semidefinite programming, SIAM Journal on Control and Optimization, 40 (2002), 1791-1820.doi: 10.1137/S0363012900373483.

    [6]

    R. Fletcher, N. I. M. Gould, S. Leyffer and A. Wächter, Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim., 13 (2002), 635-659.doi: 10.1137/S1052623499357258.

    [7]

    R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Mathematical Programming, 91 (2002), 239-269.doi: 10.1007/s101070100244.

    [8]

    R. Fletcher, S. Leyffer and Ph.L. TointOn the global convergence of an SLP-Filter Algorithm, Numerical Analysis Report, Technical Report 98/13, Department of Mathematics, University of Namur, Namur, Belgium.

    [9]

    R. Fletcher, S. Leyffer and Ph.L. Toint, On the global convergence of a Filter-SQP Algorithm, SIAM J. Optim., 13 (2002), 44-59.doi: 10.1137/S105262340038081X.

    [10]

    N. I. M. Gould, C. Sainvitu and Ph. L. Toint, A filter-trust-region method for unconstraint optimization, SIAM J. Optim., 16 (2005), 341-357.doi: 10.1137/040603851.

    [11]

    C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, 2000.

    [12]

    X. X. Huang, K. L. Teo and X. Q. Yang, Approximate augmented Lagrangian functions and nonlinear semidefinite programs, Technical Report, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 2003.

    [13]

    F. Jarre, An interior method for nonconvex semidefinite programs, Optimization and Engineering, 1 (2000), 347-372.doi: 10.1023/A:1011562523132.

    [14]

    C. Kanzow, C. Nagel, H. Kato and M. Fukushima, Succseeive linearization methods for nonlinear semidefinite programs, Comput. Optim. Appl., 31 (2005), 251-273.doi: 10.1007/s10589-005-3231-4.

    [15]

    C. Li and W. Sun, On filter-successive linearization methods for nonlinear semidefinite programming, Science in China Series A, 52 (2009), 2341-2361.doi: 10.1007/s11425-009-0168-6.

    [16]

    W. Miao and W. Sun, A filter-trust-region method for unconstrained optimization, Numerical Mathematics, A Journal of Chinese Universities, 29 (2007), 88-96.

    [17]

    W. Sun, On filter methods for optimization, The 3rd Australia-China Optimization Workshop, Shanghai University. Invited talk, 2007.

    [18]

    W. Sun, On filter-type methods for optimization: motivation and development, An invited talk, 4th Sino-Japanese Optimization Meeting (SJOM2008). Cheng Kung University, Taiwan. Aug 26-31, 2008.

    [19]

    W. Sun and Y. Yuan, "Optimzation Theory and Methods: Nonlinear Programming," Springer, New York, 2006.

    [20]

    M. J. Todd, Semidefinite optimization, Numerical Mathematics, A Journal of Chinese Universities, 10 (2001), 515-560.

    [21]

    K. C. Toh, R. H. Tutuncu and M. J. Todd, SDPT3 version 4.0 (beta)- a MATLAB software for semidefinite-quadratic-linear programming, updated in 17 July, 2006. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

    [22]

    K. C. Toh, R. H. Tutuncu and M. J. Todd, On the implementation and usage of SDPT3 - a MATLAB software package for semidefinite-quadratic-linear programming version 4.0, 17 July, 2006. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

    [23]

    R. H. Tutuncu, K. C. Toh and M. J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Math. Prog., 95 (2003), 189-217.

    [24]

    H. Wolkowicz, R. Saigal and L. Vandenberghe, "Handbook of Semidefinite Programming," Boston: Kluwer Academic Publishers, 2000.

    [25]

    Z. Yang, W. Sun and L. Qi, On global convergence of a filter-trust-region algorithm for solving nonsmooth equations, International Journal of Computer Mathematics, 87 (2010), 788-796.

    [26]

    Y. Zhang, W. Sun and L. Qi, A nonmonotone filter Barzilai-Borwein method for optimization, Asia-Pacific Journal of Operational Research, 27 (2010), 55-69.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return