2012, 2(2): 223-231. doi: 10.3934/naco.2012.2.223

On a family of means generated by the Hardy-Littlewood maximal inequality

1. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

2. 

Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

3. 

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

4. 

Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića Miošića 26, 10000 Zagreb, Croatia

Received  October 2011 Revised  February 2012 Published  May 2012

The functional defined as the difference between the right-hand and the left-hand side of the Hardy-Littlewood maximal inequality is studied and its properties, such as exponential and logarithmic convexity, are explored. Furthermore, related analogues of the Lagrange and Cauchy mean value theorems are derived. Finally, using this functional, a new family of the Cauchy-type means is generated. These means are shown to be monotone.
Citation: Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223
References:
[1]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Oliver & Boyd Ltd, (1965).   Google Scholar

[2]

M. Anwar, J. Jakšetić, J. Pečarić and Atiq Ur Rehman, Exponential convexity, positive semi-definite matrices and fundamental inequalities,, J. Math. Inequal., 4 (2010), 171.  doi: 10.7153/jmi-04-17.  Google Scholar

[3]

M. Anwar and J. Pečarić, Cauchy means for signed measures,, Bull. Malays. Math. Sci. Soc., 34 (2011), 31.   Google Scholar

[4]

N. Elezović, K. Krulić and J. Pečarić, Bounds for Hardy type differences,, Acta Math. Sin. (Engl. Ser.), 27 (2011), 671.  doi: 10.1007/s10114-011-9707-5.  Google Scholar

[5]

G. B. Folland, "Real Analysis, Modern Techniques and Their Applications,", A Wiley-Interscience publication, (1984).   Google Scholar

[6]

G. H. Hardy, J. E. Littlewooda and G. Pólya, "Inequalities,", 2nd edition, (1952).   Google Scholar

[7]

J. Jakšetić and J. Pečarić, Means involving linear functionals and $n$-convex functions,, Math. Inequal. Appl., 14 (2011), 657.   Google Scholar

[8]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and New Inequalities in Analysis,", Kluwer Academic Publishers, (1993).   Google Scholar

[9]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991).   Google Scholar

[10]

L. Olsen, A new proof of Darboux's theorem,, Amer. Math. Monthly, 111 (2004), 713.  doi: 10.2307/4145046.  Google Scholar

[11]

J. E. Pečarić, F. Proschan and Y. L. Tong, "Convex Functions, Partial Orderings, and Statistical Applications,", Academic Press, (1992).   Google Scholar

show all references

References:
[1]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Oliver & Boyd Ltd, (1965).   Google Scholar

[2]

M. Anwar, J. Jakšetić, J. Pečarić and Atiq Ur Rehman, Exponential convexity, positive semi-definite matrices and fundamental inequalities,, J. Math. Inequal., 4 (2010), 171.  doi: 10.7153/jmi-04-17.  Google Scholar

[3]

M. Anwar and J. Pečarić, Cauchy means for signed measures,, Bull. Malays. Math. Sci. Soc., 34 (2011), 31.   Google Scholar

[4]

N. Elezović, K. Krulić and J. Pečarić, Bounds for Hardy type differences,, Acta Math. Sin. (Engl. Ser.), 27 (2011), 671.  doi: 10.1007/s10114-011-9707-5.  Google Scholar

[5]

G. B. Folland, "Real Analysis, Modern Techniques and Their Applications,", A Wiley-Interscience publication, (1984).   Google Scholar

[6]

G. H. Hardy, J. E. Littlewooda and G. Pólya, "Inequalities,", 2nd edition, (1952).   Google Scholar

[7]

J. Jakšetić and J. Pečarić, Means involving linear functionals and $n$-convex functions,, Math. Inequal. Appl., 14 (2011), 657.   Google Scholar

[8]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and New Inequalities in Analysis,", Kluwer Academic Publishers, (1993).   Google Scholar

[9]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991).   Google Scholar

[10]

L. Olsen, A new proof of Darboux's theorem,, Amer. Math. Monthly, 111 (2004), 713.  doi: 10.2307/4145046.  Google Scholar

[11]

J. E. Pečarić, F. Proschan and Y. L. Tong, "Convex Functions, Partial Orderings, and Statistical Applications,", Academic Press, (1992).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[10]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[11]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

 Impact Factor: 

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

[Back to Top]