2012, 2(2): 223-231. doi: 10.3934/naco.2012.2.223

On a family of means generated by the Hardy-Littlewood maximal inequality

1. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

2. 

Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

3. 

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

4. 

Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića Miošića 26, 10000 Zagreb, Croatia

Received  October 2011 Revised  February 2012 Published  May 2012

The functional defined as the difference between the right-hand and the left-hand side of the Hardy-Littlewood maximal inequality is studied and its properties, such as exponential and logarithmic convexity, are explored. Furthermore, related analogues of the Lagrange and Cauchy mean value theorems are derived. Finally, using this functional, a new family of the Cauchy-type means is generated. These means are shown to be monotone.
Citation: Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223
References:
[1]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Oliver & Boyd Ltd, (1965). Google Scholar

[2]

M. Anwar, J. Jakšetić, J. Pečarić and Atiq Ur Rehman, Exponential convexity, positive semi-definite matrices and fundamental inequalities,, J. Math. Inequal., 4 (2010), 171. doi: 10.7153/jmi-04-17. Google Scholar

[3]

M. Anwar and J. Pečarić, Cauchy means for signed measures,, Bull. Malays. Math. Sci. Soc., 34 (2011), 31. Google Scholar

[4]

N. Elezović, K. Krulić and J. Pečarić, Bounds for Hardy type differences,, Acta Math. Sin. (Engl. Ser.), 27 (2011), 671. doi: 10.1007/s10114-011-9707-5. Google Scholar

[5]

G. B. Folland, "Real Analysis, Modern Techniques and Their Applications,", A Wiley-Interscience publication, (1984). Google Scholar

[6]

G. H. Hardy, J. E. Littlewooda and G. Pólya, "Inequalities,", 2nd edition, (1952). Google Scholar

[7]

J. Jakšetić and J. Pečarić, Means involving linear functionals and $n$-convex functions,, Math. Inequal. Appl., 14 (2011), 657. Google Scholar

[8]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and New Inequalities in Analysis,", Kluwer Academic Publishers, (1993). Google Scholar

[9]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991). Google Scholar

[10]

L. Olsen, A new proof of Darboux's theorem,, Amer. Math. Monthly, 111 (2004), 713. doi: 10.2307/4145046. Google Scholar

[11]

J. E. Pečarić, F. Proschan and Y. L. Tong, "Convex Functions, Partial Orderings, and Statistical Applications,", Academic Press, (1992). Google Scholar

show all references

References:
[1]

N. I. Akhiezer, "The Classical Moment Problem and Some Related Questions in Analysis,", Oliver & Boyd Ltd, (1965). Google Scholar

[2]

M. Anwar, J. Jakšetić, J. Pečarić and Atiq Ur Rehman, Exponential convexity, positive semi-definite matrices and fundamental inequalities,, J. Math. Inequal., 4 (2010), 171. doi: 10.7153/jmi-04-17. Google Scholar

[3]

M. Anwar and J. Pečarić, Cauchy means for signed measures,, Bull. Malays. Math. Sci. Soc., 34 (2011), 31. Google Scholar

[4]

N. Elezović, K. Krulić and J. Pečarić, Bounds for Hardy type differences,, Acta Math. Sin. (Engl. Ser.), 27 (2011), 671. doi: 10.1007/s10114-011-9707-5. Google Scholar

[5]

G. B. Folland, "Real Analysis, Modern Techniques and Their Applications,", A Wiley-Interscience publication, (1984). Google Scholar

[6]

G. H. Hardy, J. E. Littlewooda and G. Pólya, "Inequalities,", 2nd edition, (1952). Google Scholar

[7]

J. Jakšetić and J. Pečarić, Means involving linear functionals and $n$-convex functions,, Math. Inequal. Appl., 14 (2011), 657. Google Scholar

[8]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and New Inequalities in Analysis,", Kluwer Academic Publishers, (1993). Google Scholar

[9]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991). Google Scholar

[10]

L. Olsen, A new proof of Darboux's theorem,, Amer. Math. Monthly, 111 (2004), 713. doi: 10.2307/4145046. Google Scholar

[11]

J. E. Pečarić, F. Proschan and Y. L. Tong, "Convex Functions, Partial Orderings, and Statistical Applications,", Academic Press, (1992). Google Scholar

[1]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[2]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[3]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[4]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[5]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[6]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[7]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[8]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[9]

Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005

[10]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[11]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[12]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[13]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[14]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[15]

Xiaoxi Li, Marc Quincampoix, Jérôme Renault. Limit value for optimal control with general means. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2113-2132. doi: 10.3934/dcds.2016.36.2113

[16]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[17]

Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146

[18]

Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697

[19]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[20]

Juan Luis Vázquez, Nikolaos B. Zographopoulos. Hardy type inequalities and hidden energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5457-5491. doi: 10.3934/dcds.2013.33.5457

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]