2012, 2(2): 233-256. doi: 10.3934/naco.2012.2.233

Maximum entropy methods for generating simulated rainfall

1. 

Centre for Industrial and Applied Mathematics, Mawson Lakes Campus, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, 5095, Australia

2. 

Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia

3. 

Data Analysis Australia Pty Ltd, School of Mathematics and Statistics, University of Western Australia, Crawley WA, 6009, Australia

Received  September 2011 Revised  March 2012 Published  May 2012

We desire to generate monthly rainfall totals for a particular location in such a way that the statistics for the simulated data match the statistics for the observed data. We are especially interested in the accumulated rainfall totals over several months. We propose two different ways to construct a joint rainfall probability distribution that matches the observed grade correlation coefficients and preserves the prescribed marginal distributions. Both methods use multi-dimensional checkerboard copulas. In the first case we use the theory of Fenchel duality to construct a copula of maximum entropy and in the second case we use a copula derived from a multi-variate normal distribution. Finally we simulate monthly rainfall totals at a particular location using each method and analyse the statistical behaviour of the corresponding quarterly accumulations.
Citation: Julia Piantadosi, Phil Howlett, Jonathan Borwein, John Henstridge. Maximum entropy methods for generating simulated rainfall. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 233-256. doi: 10.3934/naco.2012.2.233
References:
[1]

Jonathan M. Borwein and Adrian S. Lewis, "Convex Analysis and Nonlinear Optimization, Theory and Examples,", Second edition. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 3 (2006).   Google Scholar

[2]

Jonathan M. Borwein, Maximum entropy and feasibility methods for convex and nonconvex inverse problems,, Optimization, ().   Google Scholar

[3]

H. J. Fowler, C. G. Kilsby, P. E. O'Connell and A. Burton, A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change,, J. Hydrol., 308 (2005), 50.  doi: 10.1016/j.jhydrol.2004.10.021.  Google Scholar

[4]

Md Masud Hasan and Peter K. Dunn, Two Tweedie distributions that are near optimal for modelling monthly rainfall in Australia,, International J Climatology, (2010).  doi: 10.1002/joc.2162.  Google Scholar

[5]

R. W. Katz and M. B. Parlange, Overdispersion phenomenon in stochastic modelling of precipitation,, J. Climate, 11 (1998), 591.  doi: 10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.  Google Scholar

[6]

Roger B. Nelsen, "An Introduction to Copulas,", Lecture Notes in Statistics, 139 (1999).   Google Scholar

[7]

Julia Piantadosi, Phil Howlett and John Boland, Matching the grade correlation coefficient using a copula with maximum disorder,, J. Ind. Manag. Optim., 3 (2007), 305.   Google Scholar

[8]

J. Piantadosi, J. W. Boland and P. G. Howlett, Simulation of rainfall totals on various time scales-daily, monthly and yearly,, Environmental Modeling and Assessment, 14 (2009), 431.  doi: 10.1007/s10666-008-9157-3.  Google Scholar

[9]

Julia Piantadosi, Phil Howlett and Jonathan Borwein, Copulas with maximum entropy,, Optimization Letters, 6 (2012), 99.  doi: 10.1007/s11590-010-0254-2.  Google Scholar

[10]

J. Piantadosi, P. G. Howlett, J. M. Borwein and J. Henstridge, Generation of simulated rainfall data at different time-scales,, in, (2011), 1652.   Google Scholar

[11]

K. Rosenberg, J. Boland and P. G. Howlett, Simulation of monthly rainfall totals,, ANZIAM J., 46 (2004).   Google Scholar

[12]

R. Srikanthan and T. A. McMahon, Stochastic generation of annual, monthly and daily climate data: A review,, Hydr. and Earth Sys. Sci., 5 (2001), 633.  doi: 10.5194/hess-5-653-2001.  Google Scholar

[13]

R. D. Stern and R. Coe, A model fitting analysis of daily rainfall,, J. Roy. Statist. Soc. A, 147 (1984), 1.   Google Scholar

[14]

Ruye Wang, Conditional and marginal of multivariate Gaussian,, (2006), (2006).   Google Scholar

[15]

Christopher S. Withers and Saralees Nadarajah, On the compound Poisson-gamma distribution,, Kybernetika (Prague), 47 (2011), 15.   Google Scholar

[16]

, Differential Entropy,, , ().   Google Scholar

[17]

D. S. Wilks and R. L. Wilby, The weather generation game: a review of stochastic weather models,, Prog. Phys. Geog., 23 (1999), 329.   Google Scholar

show all references

References:
[1]

Jonathan M. Borwein and Adrian S. Lewis, "Convex Analysis and Nonlinear Optimization, Theory and Examples,", Second edition. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 3 (2006).   Google Scholar

[2]

Jonathan M. Borwein, Maximum entropy and feasibility methods for convex and nonconvex inverse problems,, Optimization, ().   Google Scholar

[3]

H. J. Fowler, C. G. Kilsby, P. E. O'Connell and A. Burton, A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change,, J. Hydrol., 308 (2005), 50.  doi: 10.1016/j.jhydrol.2004.10.021.  Google Scholar

[4]

Md Masud Hasan and Peter K. Dunn, Two Tweedie distributions that are near optimal for modelling monthly rainfall in Australia,, International J Climatology, (2010).  doi: 10.1002/joc.2162.  Google Scholar

[5]

R. W. Katz and M. B. Parlange, Overdispersion phenomenon in stochastic modelling of precipitation,, J. Climate, 11 (1998), 591.  doi: 10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.  Google Scholar

[6]

Roger B. Nelsen, "An Introduction to Copulas,", Lecture Notes in Statistics, 139 (1999).   Google Scholar

[7]

Julia Piantadosi, Phil Howlett and John Boland, Matching the grade correlation coefficient using a copula with maximum disorder,, J. Ind. Manag. Optim., 3 (2007), 305.   Google Scholar

[8]

J. Piantadosi, J. W. Boland and P. G. Howlett, Simulation of rainfall totals on various time scales-daily, monthly and yearly,, Environmental Modeling and Assessment, 14 (2009), 431.  doi: 10.1007/s10666-008-9157-3.  Google Scholar

[9]

Julia Piantadosi, Phil Howlett and Jonathan Borwein, Copulas with maximum entropy,, Optimization Letters, 6 (2012), 99.  doi: 10.1007/s11590-010-0254-2.  Google Scholar

[10]

J. Piantadosi, P. G. Howlett, J. M. Borwein and J. Henstridge, Generation of simulated rainfall data at different time-scales,, in, (2011), 1652.   Google Scholar

[11]

K. Rosenberg, J. Boland and P. G. Howlett, Simulation of monthly rainfall totals,, ANZIAM J., 46 (2004).   Google Scholar

[12]

R. Srikanthan and T. A. McMahon, Stochastic generation of annual, monthly and daily climate data: A review,, Hydr. and Earth Sys. Sci., 5 (2001), 633.  doi: 10.5194/hess-5-653-2001.  Google Scholar

[13]

R. D. Stern and R. Coe, A model fitting analysis of daily rainfall,, J. Roy. Statist. Soc. A, 147 (1984), 1.   Google Scholar

[14]

Ruye Wang, Conditional and marginal of multivariate Gaussian,, (2006), (2006).   Google Scholar

[15]

Christopher S. Withers and Saralees Nadarajah, On the compound Poisson-gamma distribution,, Kybernetika (Prague), 47 (2011), 15.   Google Scholar

[16]

, Differential Entropy,, , ().   Google Scholar

[17]

D. S. Wilks and R. L. Wilby, The weather generation game: a review of stochastic weather models,, Prog. Phys. Geog., 23 (1999), 329.   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (11)

[Back to Top]