Citation: |
[1] |
C. Bender and R. Denk, A forward scheme for backward SDEs, Stochastic Processes and their Applications, 117 (2007), 1793-1812.doi: 10.1016/j.spa.2007.03.005. |
[2] |
B. Bouchard and N. Touzi, Discrete-time approximation and monte carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications, 111 (2004), 175-206.doi: 10.1016/j.spa.2004.01.001. |
[3] |
P. Carr, H. Geman, D. B. Madan and M. Yor, From local volatility to local Lévy models, Quantitative Finance, 4 (2004), 581-588.doi: 10.1080/14697680400000039. |
[4] |
S. N. Cohen and R. J. Elliott, Solutions of backward stochastic differential equations on Markov chains, Communications on Stochastic Analysis, 2 (2008), 251-262. |
[5] |
S. N. Cohen and R. J. Elliott, Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions, The Annals of Applied Probability, 20 (2010), 267-311.doi: 10.1214/09-AAP619. |
[6] |
N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1-71.doi: 10.1111/1467-9965.00022. |
[7] |
F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: a simple least-squares approach, Review of Financial Studies, 14 (2001), 113-147.doi: 10.1093/rfs/14.1.113. |
[8] |
D. B. Madan, M. Pistorius and W.Schoutens, The valuation of structured products using Markov chain models, University of Maryland Working Paper, 2010. Available from http://www.ssrn.com/abstract=1563500. |
[9] |
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 14 (1990), 55-61.doi: 10.1016/0167-6911(90)90082-6. |
[10] |
S. Peng., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation, Stochastics and Stochastics Reports, 38 (1992), 119-134. |
[11] |
J. Yong and X. Y. Zhou, "Stochastic Controls, Hamiltonian Systems and HJB Equations," Springer, Berlin-Heidelberg-New York, 1999. |