\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On Markovian solutions to Markov Chain BSDEs

Abstract Related Papers Cited by
  • We study (backward) stochastic differential equations with noise coming from a finite state Markov chain. We show that, for the solutions of these equations to be `Markovian', in the sense that they are deterministic functions of the state of the underlying chain, the integrand must be of a specific form. This allows us to connect these equations to coupled systems of ODEs, and hence to give fast numerical methods for the evaluation of Markov-Chain BSDEs.
    Mathematics Subject Classification: Primary: 60J27; Secondary: 60H05, 34A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bender and R. Denk, A forward scheme for backward SDEs, Stochastic Processes and their Applications, 117 (2007), 1793-1812.doi: 10.1016/j.spa.2007.03.005.

    [2]

    B. Bouchard and N. Touzi, Discrete-time approximation and monte carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications, 111 (2004), 175-206.doi: 10.1016/j.spa.2004.01.001.

    [3]

    P. Carr, H. Geman, D. B. Madan and M. Yor, From local volatility to local Lévy models, Quantitative Finance, 4 (2004), 581-588.doi: 10.1080/14697680400000039.

    [4]

    S. N. Cohen and R. J. Elliott, Solutions of backward stochastic differential equations on Markov chains, Communications on Stochastic Analysis, 2 (2008), 251-262.

    [5]

    S. N. Cohen and R. J. Elliott, Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions, The Annals of Applied Probability, 20 (2010), 267-311.doi: 10.1214/09-AAP619.

    [6]

    N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1-71.doi: 10.1111/1467-9965.00022.

    [7]

    F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: a simple least-squares approach, Review of Financial Studies, 14 (2001), 113-147.doi: 10.1093/rfs/14.1.113.

    [8]

    D. B. Madan, M. Pistorius and W.Schoutens, The valuation of structured products using Markov chain models, University of Maryland Working Paper, 2010. Available from http://www.ssrn.com/abstract=1563500.

    [9]

    E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 14 (1990), 55-61.doi: 10.1016/0167-6911(90)90082-6.

    [10]

    S. Peng., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation, Stochastics and Stochastics Reports, 38 (1992), 119-134.

    [11]

    J. Yong and X. Y. Zhou, "Stochastic Controls, Hamiltonian Systems and HJB Equations," Springer, Berlin-Heidelberg-New York, 1999.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return