2012, 2(2): 257-269. doi: 10.3934/naco.2012.2.257

On Markovian solutions to Markov Chain BSDEs

1. 

Mathematical Institute, University of Oxford, 24-29 St Giles, OX1 3LB, Oxford, United Kingdom, United Kingdom

Received  November 2011 Revised  March 2012 Published  May 2012

We study (backward) stochastic differential equations with noise coming from a finite state Markov chain. We show that, for the solutions of these equations to be `Markovian', in the sense that they are deterministic functions of the state of the underlying chain, the integrand must be of a specific form. This allows us to connect these equations to coupled systems of ODEs, and hence to give fast numerical methods for the evaluation of Markov-Chain BSDEs.
Citation: Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257
References:
[1]

C. Bender and R. Denk, A forward scheme for backward SDEs,, Stochastic Processes and their Applications, 117 (2007), 1793. doi: 10.1016/j.spa.2007.03.005. Google Scholar

[2]

B. Bouchard and N. Touzi, Discrete-time approximation and monte carlo simulation of backward stochastic differential equations,, Stochastic Processes and their Applications, 111 (2004), 175. doi: 10.1016/j.spa.2004.01.001. Google Scholar

[3]

P. Carr, H. Geman, D. B. Madan and M. Yor, From local volatility to local Lévy models,, Quantitative Finance, 4 (2004), 581. doi: 10.1080/14697680400000039. Google Scholar

[4]

S. N. Cohen and R. J. Elliott, Solutions of backward stochastic differential equations on Markov chains,, Communications on Stochastic Analysis, 2 (2008), 251. Google Scholar

[5]

S. N. Cohen and R. J. Elliott, Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions,, The Annals of Applied Probability, 20 (2010), 267. doi: 10.1214/09-AAP619. Google Scholar

[6]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[7]

F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: a simple least-squares approach,, Review of Financial Studies, 14 (2001), 113. doi: 10.1093/rfs/14.1.113. Google Scholar

[8]

D. B. Madan, M. Pistorius and W.Schoutens, The valuation of structured products using Markov chain models,, University of Maryland Working Paper, (2010). Google Scholar

[9]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems & Control Letters, 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[10]

S. Peng., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,, Stochastics and Stochastics Reports, 38 (1992), 119. Google Scholar

[11]

J. Yong and X. Y. Zhou, "Stochastic Controls, Hamiltonian Systems and HJB Equations,", Springer, (1999). Google Scholar

show all references

References:
[1]

C. Bender and R. Denk, A forward scheme for backward SDEs,, Stochastic Processes and their Applications, 117 (2007), 1793. doi: 10.1016/j.spa.2007.03.005. Google Scholar

[2]

B. Bouchard and N. Touzi, Discrete-time approximation and monte carlo simulation of backward stochastic differential equations,, Stochastic Processes and their Applications, 111 (2004), 175. doi: 10.1016/j.spa.2004.01.001. Google Scholar

[3]

P. Carr, H. Geman, D. B. Madan and M. Yor, From local volatility to local Lévy models,, Quantitative Finance, 4 (2004), 581. doi: 10.1080/14697680400000039. Google Scholar

[4]

S. N. Cohen and R. J. Elliott, Solutions of backward stochastic differential equations on Markov chains,, Communications on Stochastic Analysis, 2 (2008), 251. Google Scholar

[5]

S. N. Cohen and R. J. Elliott, Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions,, The Annals of Applied Probability, 20 (2010), 267. doi: 10.1214/09-AAP619. Google Scholar

[6]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[7]

F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: a simple least-squares approach,, Review of Financial Studies, 14 (2001), 113. doi: 10.1093/rfs/14.1.113. Google Scholar

[8]

D. B. Madan, M. Pistorius and W.Schoutens, The valuation of structured products using Markov chain models,, University of Maryland Working Paper, (2010). Google Scholar

[9]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems & Control Letters, 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[10]

S. Peng., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,, Stochastics and Stochastics Reports, 38 (1992), 119. Google Scholar

[11]

J. Yong and X. Y. Zhou, "Stochastic Controls, Hamiltonian Systems and HJB Equations,", Springer, (1999). Google Scholar

[1]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[2]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[3]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[4]

Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701

[5]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[6]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[7]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[8]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[9]

Karl Kunisch, Sérgio S. Rodrigues. Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ode systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6355-6389. doi: 10.3934/dcds.2019276

[10]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[11]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[12]

Yuri B. Gaididei, Rainer Berkemer, Carlos Gorria, Peter L. Christiansen, Atsushi Kawamoto, Takahiro Shiga, Mads P. Sørensen, Jens Starke. Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1167-1179. doi: 10.3934/dcdss.2011.4.1167

[13]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[14]

Song Wang. Numerical solution of an obstacle problem with interval coefficients. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019030

[15]

Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729

[16]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[17]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[18]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[19]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[20]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]