\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions

Abstract / Introduction Related Papers Cited by
  • Some new results concerning two mappings associated to the celebrated Hermite-Hadamard integral inequality for convex function with applications for special means are given.
    Mathematics Subject Classification: Primary: 26D15; Secondary: 25D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28 (1994), 7-12.

    [2]

    S. S. Dragomir, A mapping in connection to Hadamard's inequalities, An. Öster. Akad. Wiss. Math. Natur., (Wien), 128 (1991), 17-20.

    [3]

    S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.doi: 10.1016/0022-247X(92)90233-4.

    [4]

    S. S. Dragomir, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6 (1992), 215-222.

    [5]

    S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math., 3 (2002), Art. 35. Available from: http://www.emis.de/journals/JIPAM/article187.html?sid=187

    [6]

    S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc., 74 (2006), 471-476.doi: 10.1017/S000497270004051X.

    [7]

    S. S. Dragomir and I. Gomm, Bounds for two mappings associated to the Hermite-Hadamard inequality, Aust. J. Math. Anal. Appl., 8 (2011), 9 pages.

    [8]

    S. S. Dragomir, D. S. Milośević and J. Sándor, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4 (1993), 21-24.

    [9]

    S. S. Dragomir and C. E. M. Pearce, "Selected Topics on Hermite-Hadamard Inequalities and Applications," RGMIA Monographs, 2000. Available from: http://rgmia.org/monographs/hermite_hadamard.html

    [10]

    A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288.doi: 10.1006/jath.2001.3658.

    [11]

    E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl., 13 (2010), 1-32.

    [12]

    M. Merkle, Remarks on Ostrowski's and Hadamard's inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 10 (1999), 113-117.

    [13]

    C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl., 240 (1999), 92-104.doi: 10.1006/jmaa.1999.6593.

    [14]

    J. Pečarić and A. Vukelić, "Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions," Functional Equations, Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, (2003), 105-137.

    [15]

    G. Toader, Superadditivity and Hermite-Hadamard's inequalities, Studia Univ. Babeş-Bolyai Math., 39 (1994), 27-32.

    [16]

    G. S. Yang and M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28 (1997), 33-37.

    [17]

    G. S. Yang and K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.doi: 10.1006/jmaa.1999.6506.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return