Citation: |
[1] |
S. Aguchi and T. Yamamoto, Numerical methods with fourth order accuracy for two-point boundary value problems, RIMS Kokyuroku, Kyoto Univ., 1381 (2004), 11-20. |
[2] |
U. M. Ascher, R. M. M. Mattheij and R. D. Russell, "Numerical Solution of Boundary Value Problems for Ordinary Differential Equations," Prentice Hall, Englewood Cliffs, NJ, 1988. |
[3] |
L. K. Bieniasz, Two new compact finite-difference schemes for the solution of boundary value problems in second-order non-linear ordinary differential equations, using non-uniform grids, J. Comput. Methods Sci. Engineer., 8 (2008), 3-18. |
[4] |
J. H. Bramble and B. E. Hubbard, On the formulation of finite difference analogue of the Dirichlet problem for Poisson's equation, Numer. Math., 4 (1962), 313-327.doi: doi:10.1007/BF01386325. |
[5] |
J. C. Butcher, "Numerical Methods for Ordinary Differential Equations," 2nd edition, John Wiley & Sons, Chichester, 2008. |
[6] |
M. M. Chawla, A sixth order tridiagonal finite difference method for non-linear two-point boundary value problems, BIT, 17 (1977), 128-133.doi: doi:10.1007/BF01932284. |
[7] |
M. M. Chawla, A sixth-order tridiagonal finite difference method for general non-linear two-point boundary value problems, J. Inst. Math. Appl., 24 (1979), 35-42.doi: doi:10.1093/imamat/24.1.35. |
[8] |
L. Collatz, "The Numerical Treatment of Differential Equations," Springer, Berlin, 1966. |
[9] |
Q. Fang, Convergence of Ascher-Mattheij-Russell finite difference method for a class of two-point boundary value problems, Information, 9 (2006), 563-572. |
[10] |
Q. Fang, T. Tsuchiya and T. Yamamoto, Finite difference, finite element and finite volume methods applied to two-point boundary value problems, J. Comput. Appl. Math., 139 (2002), 9-19.doi: doi:10.1016/S0377-0427(01)00392-2. |
[11] |
H. B. Keller, "Numerical Methods for Two-Point Boundary Value Problems," Blaisdell, Waltham, 1968. |
[12] |
M. Kumar, Higher order method for singular boundary-value problems by using spline function, Appl. Math. Comput., 192 (2007), 175-179.doi: doi:10.1016/j.amc.2007.02.156. |
[13] |
R. K. Mohanty, A family of variable mesh methods for the estimates of $(du)/(dr)$ and solution of non-linear two point boundary value problems with singularity, J. Comput. Appl. Math., 182 (2005), 173-187.doi: doi:10.1016/j.cam.2004.11.045. |
[14] |
R. K. Mohanty and U. Arora, A TAGE iterative method for the solution of non-linear singular two point boundary value problems using a sixth order discretization, Appl. Math. Comput., 180 (2006), 538-548.doi: doi:10.1016/j.amc.2005.12.038. |
[15] |
R. K. Mohanty and N. Khosla, Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems, Appl. Math. Comput., 172 (2006), 148-162.doi: doi:10.1016/j.amc.2005.01.134. |
[16] |
G. H. Shortley and R. Weller, The numerical solution of Laplace's equation, J. Appl. Phys., 9 (1938), 334-348.doi: doi:10.1063/1.1710426. |
[17] |
J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis," 3rd edition, Springer, New York, 2002. |
[18] |
T. Yamamoto, Harmonic relations between Green's functions and Green's matrices for boundary value problems, RIMS Kokyuroku, Kyoto Univ., 1169 (2000), 15-26. |
[19] |
T. Yamamoto, Harmonic relations between Green's functions and Green's matrices for boundary value problems II, RIMS Kokyuroku, Kyoto Univ., 1286 (2002), 27-33. |
[20] |
T. Yamamoto, Harmonic relations between Green's functions and Green's matrices for boundary value problems III, RIMS Kokyuroku, Kyoto Univ., 1381 (2004), 1-10. |
[21] |
T. Yamamoto, Discretization principles for linear two-point boundary value problems, Numer. Funct. Anal. and Optimiz., 28 (2007), 149-172.doi: doi:10.1080/01630560600791296. |
[22] |
T. Yamamoto and S. Oishi, A mathematical theory for numerical treatment of nonlinear two-point boundary value problems, Japan J. Indust. Appl. Math., 23 (2006), 31-62.doi: doi:10.1007/BF03167497. |