• Previous Article
    A nonmonotone spectral projected gradient method for large-scale topology optimization problems
  • NACO Home
  • This Issue
  • Next Article
    Performance analysis of transmission rate control algorithm from readers to a middleware in intelligent transportation systems
2012, 2(2): 377-393. doi: 10.3934/naco.2012.2.377

Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems

1. 

School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

2. 

School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009

3. 

Department of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6846

4. 

Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Received  October 2011 Revised  January 2012 Published  May 2012

This paper presents a numerical technique in three dimensions for estimating effective diffusion coefficients of drug release devices in rotating and flow-through fluid systems. We first formulate the drug release problems as diffusion equation systems with unknown effective diffusion coefficients. We then develop a numerical technique for estimating the unknown coefficients based on a nonlinear least-squares method and a finite volume discretization scheme for the 3D diffusion equations. Numerical experiments have been performed using experimental data and the numerical results are presented to show that our methods give accurate diffusivity estimations for the test problems.
Citation: Shalela Mohd--Mahali, Song Wang, Xia Lou, Sungging Pintowantoro. Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 377-393. doi: 10.3934/naco.2012.2.377
References:
[1]

C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564.  doi: 10.1016/j.ces.2008.03.016.  Google Scholar

[2]

O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452.  doi: 10.1016/j.lwt.2006.04.008.  Google Scholar

[3]

J. Crank, "The Mathematics of Diffusion, 2nd ed.,", Oxford University Press, (1975).   Google Scholar

[4]

B. Delaunay, Sur la sphére vide,, Izv Akad Nauk SSSR, 6 (1934), 793.   Google Scholar

[5]

G. L. Dirichlet, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,, J Reine Angew Math, 40 (1850), 209.  doi: 10.1515/crll.1850.40.209.  Google Scholar

[6]

J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems,, AIChE Journal, 28 (1982), 279.  doi: 10.1002/aic.690280217.  Google Scholar

[7]

C. A. Farrugia, Flow-through dissolution testing: A comparison with stirred beaker methods,, The chronic ill, 6 (2002), 17.   Google Scholar

[8]

A. Hukka, The effective diffusion coefficient and mass transfer coefficient of nordic softwoods as calculated from direct drying experiments,, Holzforschung, 53 (1999), 534.   Google Scholar

[9]

K. Lavenberg, A method for the solution of certain nonlinear problems in least squares,, Quart. Appl. Math., 2 (1944), 164.   Google Scholar

[10]

X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609.   Google Scholar

[11]

X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation pHEMA sponge materials,, Biomaterials, 25 (2004), 5071.  doi: 10.1016/j.biomaterials.2004.01.058.  Google Scholar

[12]

D. W. Marquardt, An algorithm for least squares estimation of nonlinear parameters,, SIAM J. Appl. Math., 11 (1963), 431.  doi: 10.1137/0111030.  Google Scholar

[13]

J. J. H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems,, J Comput Phys, 115 (1994), 56.  doi: 10.1006/jcph.1994.1178.  Google Scholar

[14]

S. Mohd Mahali, S. Wang and X. Lou, Determination of effective diffusion coefficients of drug delivery devices by a state observer approach,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1119.   Google Scholar

[15]

S. Mohd Mahali, S. Wang and X. Lou, Numerical methods for estimating effective diffusion coefficients of drug delivery devices in a flow-through system,, submitted., ().   Google Scholar

[16]

M. W.-S. Tsang, "Ophthalmic Drug Release from Porous Poly-HEMA Hydrogels,", Honours Thesis, (2001).   Google Scholar

[17]

H. S. Vibeke, L. P. Betty, G. K. Henning and M. Anette, In vivo in vitro correlations for poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media,, European J Pharmaceutical Sciences, 24 (2005), 305.   Google Scholar

[18]

S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theor Chem Acc, 125 (2010), 659.  doi: 10.1007/s00214-009-0649-2.  Google Scholar

[19]

S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optim. Eng., 11 (2010), 611.  doi: 10.1007/s11081-008-9069-8.  Google Scholar

[20]

S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: from a planar disc into a finite external volume,, J Ind Manag Optim, 5 (2009), 127.   Google Scholar

[21]

D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616.  doi: 10.1023/A:1018922724566.  Google Scholar

[22]

K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367.  doi: 10.1021/ci9604652.  Google Scholar

[23]

Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares,, Numerical Algebra, 1 (2011), 15.  doi: 10.3934/naco.2011.1.15.  Google Scholar

show all references

References:
[1]

C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564.  doi: 10.1016/j.ces.2008.03.016.  Google Scholar

[2]

O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452.  doi: 10.1016/j.lwt.2006.04.008.  Google Scholar

[3]

J. Crank, "The Mathematics of Diffusion, 2nd ed.,", Oxford University Press, (1975).   Google Scholar

[4]

B. Delaunay, Sur la sphére vide,, Izv Akad Nauk SSSR, 6 (1934), 793.   Google Scholar

[5]

G. L. Dirichlet, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,, J Reine Angew Math, 40 (1850), 209.  doi: 10.1515/crll.1850.40.209.  Google Scholar

[6]

J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems,, AIChE Journal, 28 (1982), 279.  doi: 10.1002/aic.690280217.  Google Scholar

[7]

C. A. Farrugia, Flow-through dissolution testing: A comparison with stirred beaker methods,, The chronic ill, 6 (2002), 17.   Google Scholar

[8]

A. Hukka, The effective diffusion coefficient and mass transfer coefficient of nordic softwoods as calculated from direct drying experiments,, Holzforschung, 53 (1999), 534.   Google Scholar

[9]

K. Lavenberg, A method for the solution of certain nonlinear problems in least squares,, Quart. Appl. Math., 2 (1944), 164.   Google Scholar

[10]

X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609.   Google Scholar

[11]

X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation pHEMA sponge materials,, Biomaterials, 25 (2004), 5071.  doi: 10.1016/j.biomaterials.2004.01.058.  Google Scholar

[12]

D. W. Marquardt, An algorithm for least squares estimation of nonlinear parameters,, SIAM J. Appl. Math., 11 (1963), 431.  doi: 10.1137/0111030.  Google Scholar

[13]

J. J. H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems,, J Comput Phys, 115 (1994), 56.  doi: 10.1006/jcph.1994.1178.  Google Scholar

[14]

S. Mohd Mahali, S. Wang and X. Lou, Determination of effective diffusion coefficients of drug delivery devices by a state observer approach,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1119.   Google Scholar

[15]

S. Mohd Mahali, S. Wang and X. Lou, Numerical methods for estimating effective diffusion coefficients of drug delivery devices in a flow-through system,, submitted., ().   Google Scholar

[16]

M. W.-S. Tsang, "Ophthalmic Drug Release from Porous Poly-HEMA Hydrogels,", Honours Thesis, (2001).   Google Scholar

[17]

H. S. Vibeke, L. P. Betty, G. K. Henning and M. Anette, In vivo in vitro correlations for poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media,, European J Pharmaceutical Sciences, 24 (2005), 305.   Google Scholar

[18]

S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theor Chem Acc, 125 (2010), 659.  doi: 10.1007/s00214-009-0649-2.  Google Scholar

[19]

S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optim. Eng., 11 (2010), 611.  doi: 10.1007/s11081-008-9069-8.  Google Scholar

[20]

S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: from a planar disc into a finite external volume,, J Ind Manag Optim, 5 (2009), 127.   Google Scholar

[21]

D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616.  doi: 10.1023/A:1018922724566.  Google Scholar

[22]

K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367.  doi: 10.1021/ci9604652.  Google Scholar

[23]

Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares,, Numerical Algebra, 1 (2011), 15.  doi: 10.3934/naco.2011.1.15.  Google Scholar

[1]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[2]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[3]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[4]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[7]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[8]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[12]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[13]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[14]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[17]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[18]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]