Citation: |
[1] |
L. D. Berkovitz, "Convexity and Optimization in $\mathbbR^n$," John Wiley Sons, New York, 2001. |
[2] |
J. T. Betts, "Practical Methods for Optimal Control using Nonlinear Programming," Advances in Design and Control, volume 3, SIAM, Philadelphia, 2001. |
[3] |
J. E. Bobrow, Optimal robot path planning using the minimum-time criterion, IEEE J. Robotics and Automation, 4 (1988), 443-450.doi: 10.1109/56.811. |
[4] |
J. V. Burke and S. P. Han, A robust sequential quadratic programming method, Mathematical Programming, 43 (1989), 277-303.doi: 10.1007/BF01582294. |
[5] |
F. L. Chernousko, Optimization in control of robots, Computational Optimal Control, 115 (1994), 19-28. |
[6] |
M. Diehl, H. G. Bock, H. Diedam and P. Wieber, Fast direct multiple shooting algorithms for optimal robot control, Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, (2005), 65-94. |
[7] |
S. Dubowsky, M. A. Norris and Z. Shiller, Time optimal trajectory planning for robotic manipulators with obstacle avoidance: a CAD approach , in "Proc. of IEEE Int. Conf. on Robotics and Automation," (1989), 1906-1912. |
[8] |
R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Mathematical Programming, 91 (2002), 239-269.doi: 10.1007/s101070100244. |
[9] |
R. Fletcher, S. Leyffer and P. Toint, On the global convergence of a filter-SQP algorithm, SIAM Journal on Optimization, 13 (2002), 44-59.doi: 10.1137/S105262340038081X. |
[10] |
J. D. Foley, A. van Dam, S. T. Feiner and J. F. Hughes, "Computer Graphics - Principles and Practice," Addison Wesley, 1990. |
[11] |
M. Gerdts, "Numerische Methoden Optimaler Steuerprozesse Mit Differential-Algebraischen Gleichungssystemen Höheren Indexes und ihre Anwendungen in der Kraftfahrzeugsimulation und Mechanik," Bayreuther Mathematische Schriften, 61 (2001). |
[12] |
M. Gerdts, Direct shooting method for the numerical solution of higher index DAE optimal control problems, Journal of Optimization Theory and Applications, 117 (2003), 267-294.doi: 10.1023/A:1023679622905. |
[13] |
M. Gerdts and F. Lempio, "Mathematische Optimierungsverfahren des Operations Research," De Gruyter, Berlin, 2011.doi: 10.1515/9783110249989. |
[14] |
E. M. Gertz and S. J. Wright, Object-oriented software for quadratic programming, ACM Transactions on Mathematical Software, 29 (2003), 58-81.doi: 10.1145/641876.641880. |
[15] |
E. G. Gilbert and S. M. Hong, A new algorithm for detecting the collision of moving objects, in "IEEE Proc. Int. Conf. on Robotics and Automation," 1 (1989), 8-14. |
[16] |
E. G. Gilbert and D. W. Johnson, Distance functions and their application to robot path planning in the presence of obstacles, IEEE Journal of Robotics and Automation, 1 (1985), 21-30. |
[17] |
P. E. Gill and W. Murray, Numerically stable methods for quadratic programming, Mathematical Programming, 14 (1978), 349-372.doi: 10.1007/BF01588976. |
[18] |
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Inertia-controlling methods for general quadratic programming, SIAM Review, 33 (1991), 1-36.doi: 10.1137/1033001. |
[19] |
D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic programs, Mathematical Programming, 27 (1983), 1-33.doi: 10.1007/BF02591962. |
[20] |
K. Gupta and A. P. del Pobil, "Practical Motion Planning in Robotics," Wiley, New York, 1998. |
[21] |
M. E. Kahn and B. Roth, The near-minimum-time control of open-loop articulated Kinematic chains, J. of Dynamic Sys., Meas. and Contr., 93 (1971), 164-172.doi: 10.1115/1.3426492. |
[22] |
S. M. LaValle, "Planning Algorithms," Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511546877. |
[23] |
M. Pérez-Francisco, A. P. del Pobil and B. Martinez-Salvador, Parallel collision detection between moving robots for practical motion planning, Journal of Robotic Systems, 18 (2001), 487-506.doi: 10.1002/rob.1039. |
[24] |
F. Pfeiffer, "Einführung in die Dynamik," B. G. Teubner, Stuttgart, 1992. |
[25] |
M. J. D. Powell, A fast algorithm for nonlinearily constrained optimization calculation, in "Lecture Notes in Mathematics, Numerical Analysis"(ed G. A. Watson), vol. 630, Springer, Berlin-Heidelberg-New York, 1978. |
[26] |
S. Redon, A. Kheddar and S. Coquillart, Hierarchical back-face culling for collision detection, Proceedings of IEEE International Conference on Robotics and Automation, (2002). |
[27] |
K. Schittkowski, The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangean type line search function. Part 1: Convergence analysis, Part 2: An efficient implementation with linear least squares subproblems, Numerische Mathematik, 38 (1981), 83-114, 115-127. |
[28] |
K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangean line search function, Mathematische Operationsforschung und Statistik, Series Optimization, 14 (1983), 197-216. |
[29] |
Peter Spellucci, "Numerische Verfahren der Nichtlinearen Optimierung," Birkhäuser, Basel, 1993. |
[30] |
R. J. Vanderbei, "Linear programming, Foundations and Extensions," International Series in Operations Research & Management Science, 37, 2001. |
[31] |
G. Vaněček Jr., Back-face culling applied to collision detection of polyhedra, Journal of Visualization and Computer Animation, 5 (1994), 55-63.doi: 10.1002/vis.4340050105. |
[32] |
O. von Stryk and M. Schlemmer, Optimal control of the industrial robot manutec r3, Computational Optimal Control, 115 (1994), 367-382. |