\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Path planning and collision avoidance for robots

Abstract Related Papers Cited by
  • An optimal control problem to find the fastest collision-free trajectory of a robot surrounded by obstacles is presented. The collision avoidance is based on linear programming arguments and expressed as state constraints. The optimal control problem is solved with a sequential programming method. In order to decrease the number of unknowns and constraints a backface culling active set strategy is added to the resolution technique.
    Mathematics Subject Classification: Primary: 49J15, 49M25, 49N90; Secondary: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. D. Berkovitz, "Convexity and Optimization in $\mathbbR^n$," John Wiley Sons, New York, 2001.

    [2]

    J. T. Betts, "Practical Methods for Optimal Control using Nonlinear Programming," Advances in Design and Control, volume 3, SIAM, Philadelphia, 2001.

    [3]

    J. E. Bobrow, Optimal robot path planning using the minimum-time criterion, IEEE J. Robotics and Automation, 4 (1988), 443-450.doi: 10.1109/56.811.

    [4]

    J. V. Burke and S. P. Han, A robust sequential quadratic programming method, Mathematical Programming, 43 (1989), 277-303.doi: 10.1007/BF01582294.

    [5]

    F. L. Chernousko, Optimization in control of robots, Computational Optimal Control, 115 (1994), 19-28.

    [6]

    M. Diehl, H. G. Bock, H. Diedam and P. Wieber, Fast direct multiple shooting algorithms for optimal robot control, Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, (2005), 65-94.

    [7]

    S. Dubowsky, M. A. Norris and Z. Shiller, Time optimal trajectory planning for robotic manipulators with obstacle avoidance: a CAD approach , in "Proc. of IEEE Int. Conf. on Robotics and Automation," (1989), 1906-1912.

    [8]

    R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Mathematical Programming, 91 (2002), 239-269.doi: 10.1007/s101070100244.

    [9]

    R. Fletcher, S. Leyffer and P. Toint, On the global convergence of a filter-SQP algorithm, SIAM Journal on Optimization, 13 (2002), 44-59.doi: 10.1137/S105262340038081X.

    [10]

    J. D. Foley, A. van Dam, S. T. Feiner and J. F. Hughes, "Computer Graphics - Principles and Practice," Addison Wesley, 1990.

    [11]

    M. Gerdts, "Numerische Methoden Optimaler Steuerprozesse Mit Differential-Algebraischen Gleichungssystemen Höheren Indexes und ihre Anwendungen in der Kraftfahrzeugsimulation und Mechanik," Bayreuther Mathematische Schriften, 61 (2001).

    [12]

    M. Gerdts, Direct shooting method for the numerical solution of higher index DAE optimal control problems, Journal of Optimization Theory and Applications, 117 (2003), 267-294.doi: 10.1023/A:1023679622905.

    [13]

    M. Gerdts and F. Lempio, "Mathematische Optimierungsverfahren des Operations Research," De Gruyter, Berlin, 2011.doi: 10.1515/9783110249989.

    [14]

    E. M. Gertz and S. J. Wright, Object-oriented software for quadratic programming, ACM Transactions on Mathematical Software, 29 (2003), 58-81.doi: 10.1145/641876.641880.

    [15]

    E. G. Gilbert and S. M. Hong, A new algorithm for detecting the collision of moving objects, in "IEEE Proc. Int. Conf. on Robotics and Automation," 1 (1989), 8-14.

    [16]

    E. G. Gilbert and D. W. Johnson, Distance functions and their application to robot path planning in the presence of obstacles, IEEE Journal of Robotics and Automation, 1 (1985), 21-30.

    [17]

    P. E. Gill and W. Murray, Numerically stable methods for quadratic programming, Mathematical Programming, 14 (1978), 349-372.doi: 10.1007/BF01588976.

    [18]

    P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Inertia-controlling methods for general quadratic programming, SIAM Review, 33 (1991), 1-36.doi: 10.1137/1033001.

    [19]

    D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic programs, Mathematical Programming, 27 (1983), 1-33.doi: 10.1007/BF02591962.

    [20]

    K. Gupta and A. P. del Pobil, "Practical Motion Planning in Robotics," Wiley, New York, 1998.

    [21]

    M. E. Kahn and B. Roth, The near-minimum-time control of open-loop articulated Kinematic chains, J. of Dynamic Sys., Meas. and Contr., 93 (1971), 164-172.doi: 10.1115/1.3426492.

    [22]

    S. M. LaValle, "Planning Algorithms," Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511546877.

    [23]

    M. Pérez-Francisco, A. P. del Pobil and B. Martinez-Salvador, Parallel collision detection between moving robots for practical motion planning, Journal of Robotic Systems, 18 (2001), 487-506.doi: 10.1002/rob.1039.

    [24]

    F. Pfeiffer, "Einführung in die Dynamik," B. G. Teubner, Stuttgart, 1992.

    [25]

    M. J. D. Powell, A fast algorithm for nonlinearily constrained optimization calculation, in "Lecture Notes in Mathematics, Numerical Analysis"(ed G. A. Watson), vol. 630, Springer, Berlin-Heidelberg-New York, 1978.

    [26]

    S. Redon, A. Kheddar and S. Coquillart, Hierarchical back-face culling for collision detection, Proceedings of IEEE International Conference on Robotics and Automation, (2002).

    [27]

    K. Schittkowski, The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangean type line search function. Part 1: Convergence analysis, Part 2: An efficient implementation with linear least squares subproblems, Numerische Mathematik, 38 (1981), 83-114, 115-127.

    [28]

    K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangean line search function, Mathematische Operationsforschung und Statistik, Series Optimization, 14 (1983), 197-216.

    [29]

    Peter Spellucci, "Numerische Verfahren der Nichtlinearen Optimierung," Birkhäuser, Basel, 1993.

    [30]

    R. J. Vanderbei, "Linear programming, Foundations and Extensions," International Series in Operations Research & Management Science, 37, 2001.

    [31]

    G. Vaněček Jr., Back-face culling applied to collision detection of polyhedra, Journal of Visualization and Computer Animation, 5 (1994), 55-63.doi: 10.1002/vis.4340050105.

    [32]

    O. von Stryk and M. Schlemmer, Optimal control of the industrial robot manutec r3, Computational Optimal Control, 115 (1994), 367-382.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(331) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return