\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An AIS-based optimal control framework for longevity and task achievement of multi-robot systems

Abstract / Introduction Related Papers Cited by
  • Extending the longevity of autonomous agent system in real life application is a difficult task, especially in applications which require continuous high system performance. This paper presents a novel decentralized balancing controlling architecture for longevity and achievement in multi-agent robot systems based on several artificial immune systems (AIS) designs and principles. Simulation experiments have verified the proposed architecture has good capability to efficiently minimize the trade-off in system achievement while maintaining system sustainability, even in very demanding situations.
    Mathematics Subject Classification: Primary: 93C85, 90C31; Secondary: 92B20, 68T05, 68T40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    AAMAS, "Adaptive Agents and Multi-Agent Systems: Adaptation and Multi-Agent Learning" (eds. E. Alonso, D. Kudenko and D. Kazakov), Springer-Verlag, Berlin, 2003.

    [2]

    AAMAS, "Adaptive Agents and Multi-Agent Systems II: Adaptation and Multi-Agent Learning" (eds. D. Kudenko, D. Kazakov and E. Alonso), Springer-Verlag, Berlin, 2005.

    [3]

    AAMAS, "Adaptive Agents and Multi-Agent Systems III: Adaptation and Multi-Agent Learning" (eds. K. Tuyls, A. Nowe, Z. Guessoum and D. Kudenko), Springer-Verlag, Berlin, 2008.

    [4]

    A. Bazzan, D. de Oliveira, F. Klugl and K. Nagel, To adapt or not to adapt  consequences of adapting driver and traffic light agents, in "Adaptive Agents and Multi-Agent Systems III : Adaptation and Multi-Agent Learning" (eds. K. Tuyls, A. Nowe, Z. Guessoum and D. Kudenko), Springer-Verlag, Berlin, (2008), 1-14.doi: 10.1007/978-3-540-77949-0_1.

    [5]

    H. Brighton, S. Kirby and K. Smith, Situated cognition and the role of multi-agent models in explaining language structure, in "Adaptive Agents and Multi-Agent Systems: Adaptation and Multi-Agent Learning" (eds. E. Alonso, D. Kudenko and D. Kazakov), Springer-Verlag, Berlin, (2003), 88-109.

    [6]

    R. C. M. Chan and H. Y. K. Lau, Artificial immunity based cooperative sustainment framework for multi-agent systems, in "Research and Development in Intelligent Systems XXVII" (eds. M. Bramer, M. Petridis and A. Hopgood), Springer, London, (2011), 267-272.doi: 10.1007/978-0-85729-130-1_19.

    [7]

    D. Dasgupta, An artificial immune system as a multi-agent decision support system, in "IEEE International Conference on Systems, Man, and Cybernetics," 3814 (1998), 3816-3820.

    [8]

    D. Dasgupta, "Artificial Immune Systems and Their Applications," Springer-Verlag, Berlin, 1999.doi: 10.1007/978-3-642-59901-9.

    [9]

    L. N. De Castro and J. Timmis, "Artificial Immune Systems: A New Computational Intelligence Approach," Springer, London, 2002.

    [10]

    M. B. Dias, Z. Marc, Z. Robert and S. Anthony, Robust multirobot coordination in dynamic environments, in "IEEE International Conference on Robotics and Automation (ICRA)," Barcelona, Spain, (2004), 3435-3442.

    [11]

    R. Humza, O. Scholz, M. Mokhtar, J. Timmis and A. Tyrrell, Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism, in "Proceedings of the 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns," IEEE Computer Society, Washington DC, USA, (2009), 21-26.doi: 10.1109/ComputationWorld.2009.83.

    [12]

    Y. Ishida, "Immunity-Based Systems - A Design Perspective," Springer-Verlag, Germany, 2004.

    [13]

    A. Ishiguro, R. Watanabe and Y. Uchikawa, An immunological approach to dynamic behavior control for autonomous mobile robots, in "IEEE/RSJ International Conference on Intelligent Robots and Systems," iros, 1 (1995), 495-495.

    [14]

    N. K. Jerne, Towards a network theory of the immune system, Annales d'immunologie, 125C (1974), 373-389.

    [15]

    Z. Ji and D. Dasgupta, Artificial immune systems (AIS) research in the last five years, in "Congress on Evolutionary Computation (CEC)," Canberra, Australia, 2003, 528-535.

    [16]

    M. Kefi, O. Korbaa, K. Ghedira and P. Yim, Container handling using multi-agent architecture, in "Agent and Multi-Agent Systems: Technologies and Applications : First KES International Symposium (KES-AMSTA)" (eds. N.T. Nguyen, A. Grzech, R.J. Howlett and L.C. Jain), Wroclaw, Poland, (2007), 685-693.

    [17]

    KES-AMSTA, "Agent and Multi-Agent Systems: Technologies and Applications: First KES International Symposium (KES-AMSTA)" (eds. N. T. Nguyen, A. Grzech, R. J. Howlett and L. C. Jain), Springer-Verlag, Berlin, 2007.

    [18]

    KES-AMSTA, "Agent and Multi-Agent Systems: Technologies and Applications: Second KES International Symposium (KES-AMSTA)" (eds. N. T. Nguyen, G. Jo, R. J. Howlett and L. C. Jain), Springer-Verlag, Berlin, 2008.

    [19]

    KES-AMSTA, "Agent and Multi-Agent Systems: Technologies and Applications: Thrid KES International Symposium (KES-AMSTA)" (eds. A. Hakansson, N. T. Nguyen, R. L. Hartung, R. J. Howlett and L. C. Jain), Springer-Verlag, Berlin, 2009.

    [20]

    A. Ko, H. Y. K. Lau and T. L. Lau, General suppression control framework: application in self-balancing robots, in "Artificial Immune Systems: 4th International Conference (ICARIS)," Banff, Alberta, Canada, (2005), 375-388.

    [21]

    H. Y. K. Lau and V. W. K. Wong, An immunity-based distributed multiagent-control framework, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 36 (2006), 91-108.doi: 10.1109/TSMCA.2005.859103.

    [22]

    H. Y. K. Lau, V. W. K. Wong and A. K. S. Ng, A cooperative control model for multiagent-based material handling systems, Expert Systems with Applications, 36 (2009), 233-247.doi: 10.1016/j.eswa.2007.09.025.

    [23]

    S. Lu and H. Y. K. Lau, An Immunity Inspired Real-Time Cooperative Control Framework for Networked Multi-agent Systems, in "Artificial Immune Systems: 8th International Conference (ICARIS)" (eds. P. S. Andres, J. Timmis, N. D. L. Owens, U. Aickelin, E. Hart, A. Hone and A. M. Tryrrell), York, UK, (2009), 234-247.

    [24]

    D. Male, J. Brostoff, D. B. Roth and I. Roitt, "Immunology," Elsevier, Canada, 2006.

    [25]

    M. J. Mataric, "The Robotics Primer," The MIT Press, Cambridge, Mass., 2007.

    [26]

    P. Matzinger, Tolerance, danger and the extended family, Annu. Rev. Immunology, 12 (1994), 991-1045.doi: 10.1146/annurev.immunol.12.1.991.

    [27]

    C. M. Ou and C. Ou, Multi-agent artificial immune systems (MAAIS) for intrusion detection: Abstraction from danger theory, in "Agent and Multi-Agent Systems: Technologies and Applications: Third KES International Symposium (KES-AMSTA)" (eds. A. Hakansson, N. T. Nguyen, R. L. Hartung, R. J. Howlett and L. C. Jain), Uppsala, Sweden, (2009), 11-19.

    [28]

    L. E. Parker, ALLIANCE: an architecture for fault tolerant multirobot cooperation, IEEE Transactions on Robotics and Automation, 14 (1998), 220-240.doi: 10.1109/70.681242.

    [29]

    J. Pisokas and U. Nehmzow, Experiments in subsymbolic action planning with mobile robots, in "Adaptive Agents and Multi-Agent Systems II: Adaptation and Multi-Agent Learning" (eds. D. Kudenko, D. Kazakov and E. Alonso), (2005), 216-229.

    [30]
    [31]

    W. K. Purves, D. Sadava, G. H. Orians and H. C. Heller, "Life: The Science of Biology," 6th edition, Sinauer Associates, Inc., USA, 2001.

    [32]

    I. Satoh, Self-organizing Multi-agent Systems for Data Mining, in "Autonomous Intelligent Systems: Multi-Agents and Data Mining" (eds. V. Gorodetsky, C. Zhang, V. A. Skormin and L. Cao), Springer-Verlag, Berlin, (2007), 165-177.doi: 10.1007/978-3-540-72839-9_14.

    [33]

    A. Servin and D. Kudenko, Multi-agent reinforcement learning for intrusion detection, in "Adaptive Agents and Multi-Agent Systems III: Adaptation and Multi-Agent Learning" (eds. K. Tuyls, A. Nowe, Z. Guessoum and D. Kudenko), Springer-Verlag, Berlin, (2008), 211-223.doi: 10.1007/978-3-540-77949-0_15.

    [34]

    A. Smirnov, M. Pashkin, T. Levashova, N. Shilov and A. Kashevnik, Role-based decision mining for multiagent emergency response management, in "Autonomous Intelligent Systems: Multi-Agents and Data Mining" (eds. V. Gorodetsky, C. Zhang, V. A. Skormin and L. Cao), Springer-Verlag, Berlin, (2007), 178-191.doi: 10.1007/978-3-540-72839-9_15.

    [35]

    L. Sompayrac, "How the Immune System Works," Blackwell Science, Malden, Mass, 1999.

    [36]

    M. Strens and N. Windelinckx, Combining planning with reinforcement learning for multi-robot task allocation, in "Adaptive Agents and Multi-Agent Systems II: Adaptation and Multi-Agent Learning" (eds. D. Kudenko, D. Kazakov and E. Alonso), (2005), 260-274.

    [37]

    J. Timmis, Artificial immune systemstoday and tomorrow, Natural Computing, 6 (2007), 1-18.doi: 10.1007/s11047-006-9029-1.

    [38]

    J. Timmis, P. Andrews, N. Owens and E. Clark, An interdisciplinary perspective on artificial immune systems, Evolutionary Intelligence, 1 (2008), 5-26.doi: 10.1007/s12065-007-0004-2.

    [39]

    M. Wurst, Multi-agent learning by distributed feature extraction, in "Adaptive Agents and Multi-Agent Systems III: Adaptation and Multi-Agent Learning" (eds. K. Tuyls, A. Nowe, Z. Guessoum and D. Kudenko), Springer-Verlag, Berlin, (2008), 239-254.doi: 10.1007/978-3-540-77949-0_17.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return