-
Previous Article
A direct method for the solution of an optimal control problem arising from image registration
- NACO Home
- This Issue
-
Next Article
Path planning and collision avoidance for robots
Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems
1. | Chair for Nonlinear Dynamics, Steinbachstr. 15, 52074 Aachen, Germany |
2. | Institut für Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, Germany |
References:
[1] |
K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition, Lect. Notes Pure Appl. Math., 216 (2001), 317-332. |
[2] |
A. C. Antoulas, "Approximation of Large-Scale Dynamical Systems," SIAM, Philadelphia, (2005).
doi: 10.1137/1.9780898718713. |
[3] |
N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Computational Optimization and Applications, 23 (2002), 201-219.
doi: 10.1023/A:1020576801966. |
[4] |
P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SIAM Journal on Control and Optimization , 49 (2011), 686-711.
doi: 10.1137/09075041X. |
[5] |
P. Benner and J. Saak, A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations, 2010. Available from: http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints. |
[6] |
P. Benner and E. S. Quintana-Ortí, Model reduction based on spectral projection methods, In "Reduction of Large-Scale Systems" (eds. P. Benner, V. Mehrmann and D. C. Sorensen), Lecture Notes in Computational Science and Engineering, 45 (2005), 5-48. |
[7] |
A. Bunse-Gerstner, D. Kubalinska, G. Vossen and D. Wilczek, $h_2$-norm optimal model reduction for large-scale discrete dynamical MIMO systems, Journal of Computational and Applied Mathematics, 233 (2010), 1202-1216.
doi: 10.1016/j.cam.2008.12.029. |
[8] |
A. L. Dontchev, W. W. Hager, A. B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control, Appl. Math. and Optim., 31 (1995), 297-326.
doi: 10.1007/BF01215994. |
[9] |
K. Glover, All optimal Hankel-norm approximations of linear multi-variable systems and their $L_\infty$ error bounds, International Journal of Control, 39 (1984), 1115-1193.
doi: 10.1080/00207178408933239. |
[10] |
M. A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 873-877. |
[11] |
S. Gugercin, A. C. Antoulas and C. A. Beattie, $H_2$ model reduction for large-scale linear dynamical systems, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 609-638.
doi: 10.1137/060666123. |
[12] |
M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, Comput. Optim. and Appl., 39 (2008), 319-345.
doi: 10.1007/s10589-007-9058-4. |
[13] |
P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry," Cambridge Univ. Press, New York, 1996.
doi: 10.1017/CBO9780511622700. |
[14] |
M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Optimization, 13 (2003), 865-888. |
[15] |
C. Joerres, G. Vossen and M. Herty, On an inexact gradient method using POD for a parabolic optimal control problem, submitted, 2011. |
[16] |
E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems - Application to reduced order compensator design, IEEE Trans. Automat. Control, 28 (1983), 953-964.
doi: 10.1109/TAC.1983.1103159. |
[17] |
E. Kammann, F. Tröltzsch and S. Volkwein, A method of a-posteriori error estimation with application to proper orthogonal decomposition, submitted, 2011. |
[18] |
D. Kubalinska, "Optimal Interpolation-Based Model Reduction," PhD thesis, University of Bremen, 2008. |
[19] |
K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.
doi: 10.1007/s002110100282. |
[20] |
K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM: Mathematical Modelling and Numerical Analysis, 42 (2008), 1-23.
doi: 10.1051/m2an:2007054. |
[21] |
E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction, Statistical Forecasting Scientific Rep. 1, Department of Meteorology, Massachusetts Institute of Technology, Cambridge, MA, 1956. |
[22] |
L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, CR Acad Sci Paris Series I, 331 (2000), 1531-1548. |
[23] |
K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in "Mathematical Programming with Data Perturbation" (eds. A. V. Fiacco and Marcel Dekker), Inc., New York, (1997), 253-284. |
[24] |
H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Mathematical Programming, 16 (1979), 98-110. |
[25] |
L. Meier and D. Luenberger, Approximation of linear constant systems, IEEE Transactions on Automatic Control, 12 (1967), 585-588.
doi: 10.1109/TAC.1967.1098680. |
[26] |
B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Automatic Control, 26 (1981), 17-32.
doi: 10.1109/TAC.1981.1102568. |
[27] |
A. T. Patera and G. Rozza, "Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations," MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2006. |
[28] |
S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, SIAM J. Sci. Comput., 15 (2000), 457-478. |
[29] |
J. C. De Los Reyes and T. Stykel, A balanced truncation based strategy for optimal control of evolution problems, Optim. Methods Software, 26 (2011), 673-694.
doi: 10.1080/10556788.2010.526756. |
[30] |
J. Saak, "Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction," PhD thesis, TU Chemnitz, 2009. |
[31] |
E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance, submitted, 2011. |
[32] |
T. Stykel, Gramian-based model reduction for descriptor systems, Math. Control Signals Systems, 16 (2004), 297-319.
doi: 10.1007/s00498-004-0141-4. |
[33] |
T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear quadratic optimal control problem, Mathematical and Computer Modelling of Dynamical Systems, Special Issue: Model order reduction of parameterized problems, 17 (2011), 355-369. |
[34] |
F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.
doi: 10.1007/s10589-008-9224-3. |
[35] |
F. Tröltzsch., "Optimal Control of Partial Differential Equations. Theory, Methods and Applications," American Math. Society, Providence, 112, 2010. |
[36] |
R. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl. , 212/213 (1994), 413-414.
doi: 10.1016/0024-3795(94)90414-6. |
[37] |
S. Volkwein, Model reduction using proper orthogonal decomposition, Lecture Notes, Institute of Mathematics and Statistics, University of Constance, 2011. |
[38] |
S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, to appear in Control and Cybernetics, 2012. |
[39] |
G. Vossen, $\mathcal H_{2,\alpha}$-norm optimal model reduction for optimal control problems subject to parabolic and hyperbolic evolution equations, submitted, 2011. |
show all references
References:
[1] |
K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition, Lect. Notes Pure Appl. Math., 216 (2001), 317-332. |
[2] |
A. C. Antoulas, "Approximation of Large-Scale Dynamical Systems," SIAM, Philadelphia, (2005).
doi: 10.1137/1.9780898718713. |
[3] |
N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Computational Optimization and Applications, 23 (2002), 201-219.
doi: 10.1023/A:1020576801966. |
[4] |
P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SIAM Journal on Control and Optimization , 49 (2011), 686-711.
doi: 10.1137/09075041X. |
[5] |
P. Benner and J. Saak, A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations, 2010. Available from: http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints. |
[6] |
P. Benner and E. S. Quintana-Ortí, Model reduction based on spectral projection methods, In "Reduction of Large-Scale Systems" (eds. P. Benner, V. Mehrmann and D. C. Sorensen), Lecture Notes in Computational Science and Engineering, 45 (2005), 5-48. |
[7] |
A. Bunse-Gerstner, D. Kubalinska, G. Vossen and D. Wilczek, $h_2$-norm optimal model reduction for large-scale discrete dynamical MIMO systems, Journal of Computational and Applied Mathematics, 233 (2010), 1202-1216.
doi: 10.1016/j.cam.2008.12.029. |
[8] |
A. L. Dontchev, W. W. Hager, A. B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control, Appl. Math. and Optim., 31 (1995), 297-326.
doi: 10.1007/BF01215994. |
[9] |
K. Glover, All optimal Hankel-norm approximations of linear multi-variable systems and their $L_\infty$ error bounds, International Journal of Control, 39 (1984), 1115-1193.
doi: 10.1080/00207178408933239. |
[10] |
M. A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 873-877. |
[11] |
S. Gugercin, A. C. Antoulas and C. A. Beattie, $H_2$ model reduction for large-scale linear dynamical systems, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 609-638.
doi: 10.1137/060666123. |
[12] |
M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, Comput. Optim. and Appl., 39 (2008), 319-345.
doi: 10.1007/s10589-007-9058-4. |
[13] |
P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry," Cambridge Univ. Press, New York, 1996.
doi: 10.1017/CBO9780511622700. |
[14] |
M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Optimization, 13 (2003), 865-888. |
[15] |
C. Joerres, G. Vossen and M. Herty, On an inexact gradient method using POD for a parabolic optimal control problem, submitted, 2011. |
[16] |
E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems - Application to reduced order compensator design, IEEE Trans. Automat. Control, 28 (1983), 953-964.
doi: 10.1109/TAC.1983.1103159. |
[17] |
E. Kammann, F. Tröltzsch and S. Volkwein, A method of a-posteriori error estimation with application to proper orthogonal decomposition, submitted, 2011. |
[18] |
D. Kubalinska, "Optimal Interpolation-Based Model Reduction," PhD thesis, University of Bremen, 2008. |
[19] |
K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.
doi: 10.1007/s002110100282. |
[20] |
K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM: Mathematical Modelling and Numerical Analysis, 42 (2008), 1-23.
doi: 10.1051/m2an:2007054. |
[21] |
E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction, Statistical Forecasting Scientific Rep. 1, Department of Meteorology, Massachusetts Institute of Technology, Cambridge, MA, 1956. |
[22] |
L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, CR Acad Sci Paris Series I, 331 (2000), 1531-1548. |
[23] |
K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in "Mathematical Programming with Data Perturbation" (eds. A. V. Fiacco and Marcel Dekker), Inc., New York, (1997), 253-284. |
[24] |
H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Mathematical Programming, 16 (1979), 98-110. |
[25] |
L. Meier and D. Luenberger, Approximation of linear constant systems, IEEE Transactions on Automatic Control, 12 (1967), 585-588.
doi: 10.1109/TAC.1967.1098680. |
[26] |
B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Automatic Control, 26 (1981), 17-32.
doi: 10.1109/TAC.1981.1102568. |
[27] |
A. T. Patera and G. Rozza, "Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations," MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2006. |
[28] |
S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, SIAM J. Sci. Comput., 15 (2000), 457-478. |
[29] |
J. C. De Los Reyes and T. Stykel, A balanced truncation based strategy for optimal control of evolution problems, Optim. Methods Software, 26 (2011), 673-694.
doi: 10.1080/10556788.2010.526756. |
[30] |
J. Saak, "Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction," PhD thesis, TU Chemnitz, 2009. |
[31] |
E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance, submitted, 2011. |
[32] |
T. Stykel, Gramian-based model reduction for descriptor systems, Math. Control Signals Systems, 16 (2004), 297-319.
doi: 10.1007/s00498-004-0141-4. |
[33] |
T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear quadratic optimal control problem, Mathematical and Computer Modelling of Dynamical Systems, Special Issue: Model order reduction of parameterized problems, 17 (2011), 355-369. |
[34] |
F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.
doi: 10.1007/s10589-008-9224-3. |
[35] |
F. Tröltzsch., "Optimal Control of Partial Differential Equations. Theory, Methods and Applications," American Math. Society, Providence, 112, 2010. |
[36] |
R. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl. , 212/213 (1994), 413-414.
doi: 10.1016/0024-3795(94)90414-6. |
[37] |
S. Volkwein, Model reduction using proper orthogonal decomposition, Lecture Notes, Institute of Mathematics and Statistics, University of Constance, 2011. |
[38] |
S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems, to appear in Control and Cybernetics, 2012. |
[39] |
G. Vossen, $\mathcal H_{2,\alpha}$-norm optimal model reduction for optimal control problems subject to parabolic and hyperbolic evolution equations, submitted, 2011. |
[1] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[2] |
Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 645-663. doi: 10.3934/naco.2021002 |
[3] |
Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547 |
[4] |
Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261 |
[5] |
Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889 |
[6] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[7] |
Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117 |
[8] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[9] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034 |
[10] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 |
[11] |
Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193 |
[12] |
Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056 |
[13] |
Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022003 |
[14] |
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016 |
[15] |
Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control and Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 |
[16] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[17] |
Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control and Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83 |
[18] |
Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x |
[19] |
Qi Lü, Tianxiao Wang, Xu Zhang. Characterization of optimal feedback for stochastic linear quadratic control problems. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 11-. doi: 10.1186/s41546-017-0022-7 |
[20] |
Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]