2012, 2(3): 547-570. doi: 10.3934/naco.2012.2.547

Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions

1. 

Institut für Angewandte Mathematik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany

2. 

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany, Germany

3. 

Institut für Mathematik und Rechneranwendung, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr, 85577 Neubiberg/München, Germany

Received  July 2011 Revised  May 2012 Published  August 2012

We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order $h$ for the optimal values of the objective function, where $h$ is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure $O(\sqrt{h})$. Under a slightly stronger assumption on the smoothness of the coefficients of the system equation we obtain an error estimate of order $O(h)$.
Citation: Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547
References:
[1]

W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems,, Appl. Math. Optim., 12 (1984), 15.  doi: 10.1007/BF01449031.  Google Scholar

[2]

W. Alt, Local stability of solutions to differentiable optimization problems in Banach spaces,, J. Optim. Theory Appl., 70 (1991), 443.  doi: 10.1007/BF00941297.  Google Scholar

[3]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, (1997), 1.   Google Scholar

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximations of linear control problems with bang-bang solutions,, Optimization, (2011).  doi: 10.1080/02331934.2011.568619.  Google Scholar

[5]

W. Alt and N. Bräutigam, Finite-difference discretizations of quadratic control problems governed by ordinary elliptic differential equations,, Comp. Optim. Appl., 43 (2009), 133.  doi: 10.1007/s10589-007-9129-6.  Google Scholar

[6]

W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems,, SIAM J. Control Optim., 27 (1989), 718.  doi: 10.1137/0327038.  Google Scholar

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().   Google Scholar

[8]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[9]

W. J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[10]

I. A. Chahma, Set-valued discrete approximation of state-constrained differential inclusions,, Bayreuth. Math. Schr., 67 (2003), 3.   Google Scholar

[11]

K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls,, Comp. Optim. Appl., (2010), 10589.  doi: 10.1007/s10589-010-9365-z.  Google Scholar

[12]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints,, Comp. Optim. Appl., (2010), 10589.  doi: 10.1007/s10589-009-9310-1.  Google Scholar

[13]

A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclusions,, Computing, 41 (1989), 349.  doi: 10.1007/BF02241223.  Google Scholar

[14]

A. L. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization,, SIAM J. Control Optim., 31 (1993), 569.  doi: 10.1137/0331026.  Google Scholar

[15]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173.  doi: 10.1090/S0025-5718-00-01184-4.  Google Scholar

[16]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numer. Funct. Anal. Optim., 21 (2000), 653.  doi: 10.1080/01630560008816979.  Google Scholar

[17]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,", North Holland, (1976).   Google Scholar

[18]

U. Felgenhauer, On stability of bang-bang type controls,, SIAM J. Control Optim., 41 (2003), 1843.  doi: 10.1137/S0363012901399271.  Google Scholar

[19]

U. Felgenhauer, The shooting approach in analyzing bang-bang extremals with simultaneous control switches,, Control Cybernet., 37 (2008), 307.   Google Scholar

[20]

U. Felgenhauer, Directional sensitivity differentials for parametric bang-bang control problems,, in, (2010), 264.   Google Scholar

[21]

U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour,, Control Cybernet., 38 (2009), 1305.   Google Scholar

[22]

M. R. Hestenes, "Calculus of Variations and Optimal Control Theory,", Robert E. Krieger Publ. Co., (1980).   Google Scholar

[23]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case,, Comp. Optim. Appl., 30 (2005), 45.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[24]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1997), 253.   Google Scholar

[25]

H. Maurer, C. Büskens, J.-H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[26]

H. Maurer and N. P. Osmolovskii, Second order sufficient conditions for time optimal bang-bang control,, SIAM J. Control Optim., 42 (2004), 2239.  doi: 10.1137/S0363012902402578.  Google Scholar

[27]

P. Merino, F. Tröltzsch and B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space,, ESAIM, 44 (2010), 167.  doi: 10.1051/m2an/2009045.  Google Scholar

[28]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Contr. Optim., 43 (2004), 970.  doi: 10.1137/S0363012903431608.  Google Scholar

[29]

B. Sendov and V. A. Popov, "The Averaged Moduli of Smoothness,", Wiley-Interscience, (1988).   Google Scholar

[30]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1994).   Google Scholar

[31]

V. M. Veliov, On the time-discretization of control systems,, SIAM J. Control Optim., 35 (1997), 1470.  doi: 10.1137/S0363012995288987.  Google Scholar

[32]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: the linear case,, Control Cybernet., 34 (2005), 967.   Google Scholar

[33]

P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion,, SIAM J. Control Optim., 28 (1990), 1148.  doi: 10.1137/0328062.  Google Scholar

show all references

References:
[1]

W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems,, Appl. Math. Optim., 12 (1984), 15.  doi: 10.1007/BF01449031.  Google Scholar

[2]

W. Alt, Local stability of solutions to differentiable optimization problems in Banach spaces,, J. Optim. Theory Appl., 70 (1991), 443.  doi: 10.1007/BF00941297.  Google Scholar

[3]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, (1997), 1.   Google Scholar

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximations of linear control problems with bang-bang solutions,, Optimization, (2011).  doi: 10.1080/02331934.2011.568619.  Google Scholar

[5]

W. Alt and N. Bräutigam, Finite-difference discretizations of quadratic control problems governed by ordinary elliptic differential equations,, Comp. Optim. Appl., 43 (2009), 133.  doi: 10.1007/s10589-007-9129-6.  Google Scholar

[6]

W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems,, SIAM J. Control Optim., 27 (1989), 718.  doi: 10.1137/0327038.  Google Scholar

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().   Google Scholar

[8]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.  doi: 10.1137/060661867.  Google Scholar

[9]

W. J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91.  doi: 10.1007/s00607-007-0240-4.  Google Scholar

[10]

I. A. Chahma, Set-valued discrete approximation of state-constrained differential inclusions,, Bayreuth. Math. Schr., 67 (2003), 3.   Google Scholar

[11]

K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls,, Comp. Optim. Appl., (2010), 10589.  doi: 10.1007/s10589-010-9365-z.  Google Scholar

[12]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints,, Comp. Optim. Appl., (2010), 10589.  doi: 10.1007/s10589-009-9310-1.  Google Scholar

[13]

A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclusions,, Computing, 41 (1989), 349.  doi: 10.1007/BF02241223.  Google Scholar

[14]

A. L. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization,, SIAM J. Control Optim., 31 (1993), 569.  doi: 10.1137/0331026.  Google Scholar

[15]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173.  doi: 10.1090/S0025-5718-00-01184-4.  Google Scholar

[16]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numer. Funct. Anal. Optim., 21 (2000), 653.  doi: 10.1080/01630560008816979.  Google Scholar

[17]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,", North Holland, (1976).   Google Scholar

[18]

U. Felgenhauer, On stability of bang-bang type controls,, SIAM J. Control Optim., 41 (2003), 1843.  doi: 10.1137/S0363012901399271.  Google Scholar

[19]

U. Felgenhauer, The shooting approach in analyzing bang-bang extremals with simultaneous control switches,, Control Cybernet., 37 (2008), 307.   Google Scholar

[20]

U. Felgenhauer, Directional sensitivity differentials for parametric bang-bang control problems,, in, (2010), 264.   Google Scholar

[21]

U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour,, Control Cybernet., 38 (2009), 1305.   Google Scholar

[22]

M. R. Hestenes, "Calculus of Variations and Optimal Control Theory,", Robert E. Krieger Publ. Co., (1980).   Google Scholar

[23]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case,, Comp. Optim. Appl., 30 (2005), 45.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[24]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1997), 253.   Google Scholar

[25]

H. Maurer, C. Büskens, J.-H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[26]

H. Maurer and N. P. Osmolovskii, Second order sufficient conditions for time optimal bang-bang control,, SIAM J. Control Optim., 42 (2004), 2239.  doi: 10.1137/S0363012902402578.  Google Scholar

[27]

P. Merino, F. Tröltzsch and B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space,, ESAIM, 44 (2010), 167.  doi: 10.1051/m2an/2009045.  Google Scholar

[28]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Contr. Optim., 43 (2004), 970.  doi: 10.1137/S0363012903431608.  Google Scholar

[29]

B. Sendov and V. A. Popov, "The Averaged Moduli of Smoothness,", Wiley-Interscience, (1988).   Google Scholar

[30]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1994).   Google Scholar

[31]

V. M. Veliov, On the time-discretization of control systems,, SIAM J. Control Optim., 35 (1997), 1470.  doi: 10.1137/S0363012995288987.  Google Scholar

[32]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: the linear case,, Control Cybernet., 34 (2005), 967.   Google Scholar

[33]

P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion,, SIAM J. Control Optim., 28 (1990), 1148.  doi: 10.1137/0328062.  Google Scholar

[1]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[2]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[3]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[9]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[10]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[14]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[15]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[16]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[18]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (27)

[Back to Top]