2012, 2(3): 547-570. doi: 10.3934/naco.2012.2.547

Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions

1. 

Institut für Angewandte Mathematik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany

2. 

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany, Germany

3. 

Institut für Mathematik und Rechneranwendung, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr, 85577 Neubiberg/München, Germany

Received  July 2011 Revised  May 2012 Published  August 2012

We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order $h$ for the optimal values of the objective function, where $h$ is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure $O(\sqrt{h})$. Under a slightly stronger assumption on the smoothness of the coefficients of the system equation we obtain an error estimate of order $O(h)$.
Citation: Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547
References:
[1]

Appl. Math. Optim., 12 (1984), 15-27. doi: 10.1007/BF01449031.  Google Scholar

[2]

J. Optim. Theory Appl., 70 (1991), 443-466. doi: 10.1007/BF00941297.  Google Scholar

[3]

in "Mathematical Programming with Data Perturbations V" (ed. A. V. Fiacco), Lecture Notes in Pure and Applied Mathematics 195, Marcel Dekker, (1997), 1-30.  Google Scholar

[4]

Optimization, DOI: 10.1080/02331934.2011.568619, (2011). doi: 10.1080/02331934.2011.568619.  Google Scholar

[5]

Comp. Optim. Appl., 43 (2009), 133-150. doi: 10.1007/s10589-007-9129-6.  Google Scholar

[6]

SIAM J. Control Optim., 27 (1989), 718-736. doi: 10.1137/0327038.  Google Scholar

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().   Google Scholar

[8]

SIAM J. Optim., 18 (2007), 1004-1026. doi: 10.1137/060661867.  Google Scholar

[9]

Computing, 81 (2007), 91-106. doi: 10.1007/s00607-007-0240-4.  Google Scholar

[10]

Bayreuth. Math. Schr., 67 (2003), 3-161.  Google Scholar

[11]

Comp. Optim. Appl., DOI: 10.1007/s10589-010-9365-z, (2010). doi: 10.1007/s10589-010-9365-z.  Google Scholar

[12]

Comp. Optim. Appl., DOI: 10.1007/s10589-009-9310-1, (2010). doi: 10.1007/s10589-009-9310-1.  Google Scholar

[13]

Computing, 41 (1989), 349-358. doi: 10.1007/BF02241223.  Google Scholar

[14]

SIAM J. Control Optim., 31 (1993), 569-603. doi: 10.1137/0331026.  Google Scholar

[15]

Math. Comp., 70 (2001), 173-203. doi: 10.1090/S0025-5718-00-01184-4.  Google Scholar

[16]

Numer. Funct. Anal. Optim., 21 (2000), 653-682. doi: 10.1080/01630560008816979.  Google Scholar

[17]

North Holland, Amsterdam-Oxford, 1976.  Google Scholar

[18]

SIAM J. Control Optim., 41 (2003), 1843-1867. doi: 10.1137/S0363012901399271.  Google Scholar

[19]

Control Cybernet., 37 (2008), 307-327.  Google Scholar

[20]

in "Lecture Notes Comp. Sci., Vol. 5910" (eds. I. Lirkov et al.), Springer-Verlag, (2010), 264-271. Google Scholar

[21]

Control Cybernet., 38 (2009), 1305-1325.  Google Scholar

[22]

Robert E. Krieger Publ. Co., 1980.  Google Scholar

[23]

Comp. Optim. Appl., 30 (2005), 45-61. doi: 10.1007/s10589-005-4559-5.  Google Scholar

[24]

in "Mathematical Programming with Data Perturbations V" (ed. A. V. Fiacco), Lecture Notes in Pure and Applied Mathematics 195, Marcel Dekker, (1997), 253-284. Google Scholar

[25]

Optimal Control Appl. Methods, 26 (2005), 129-156. doi: 10.1002/oca.756.  Google Scholar

[26]

SIAM J. Control Optim., 42 (2004), 2239-2263. doi: 10.1137/S0363012902402578.  Google Scholar

[27]

ESAIM, Math. Model. Numer. Anal., 44 (2010), 167-188. doi: 10.1051/m2an/2009045.  Google Scholar

[28]

SIAM J. Contr. Optim., 43 (2004), 970-985. doi: 10.1137/S0363012903431608.  Google Scholar

[29]

Wiley-Interscience, 1988.  Google Scholar

[30]

Springer-Verlag, 1994. Google Scholar

[31]

SIAM J. Control Optim., 35 (1997), 1470-1486. doi: 10.1137/S0363012995288987.  Google Scholar

[32]

Control Cybernet., 34 (2005), 967-982.  Google Scholar

[33]

SIAM J. Control Optim., 28 (1990), 1148-1161. doi: 10.1137/0328062.  Google Scholar

show all references

References:
[1]

Appl. Math. Optim., 12 (1984), 15-27. doi: 10.1007/BF01449031.  Google Scholar

[2]

J. Optim. Theory Appl., 70 (1991), 443-466. doi: 10.1007/BF00941297.  Google Scholar

[3]

in "Mathematical Programming with Data Perturbations V" (ed. A. V. Fiacco), Lecture Notes in Pure and Applied Mathematics 195, Marcel Dekker, (1997), 1-30.  Google Scholar

[4]

Optimization, DOI: 10.1080/02331934.2011.568619, (2011). doi: 10.1080/02331934.2011.568619.  Google Scholar

[5]

Comp. Optim. Appl., 43 (2009), 133-150. doi: 10.1007/s10589-007-9129-6.  Google Scholar

[6]

SIAM J. Control Optim., 27 (1989), 718-736. doi: 10.1137/0327038.  Google Scholar

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().   Google Scholar

[8]

SIAM J. Optim., 18 (2007), 1004-1026. doi: 10.1137/060661867.  Google Scholar

[9]

Computing, 81 (2007), 91-106. doi: 10.1007/s00607-007-0240-4.  Google Scholar

[10]

Bayreuth. Math. Schr., 67 (2003), 3-161.  Google Scholar

[11]

Comp. Optim. Appl., DOI: 10.1007/s10589-010-9365-z, (2010). doi: 10.1007/s10589-010-9365-z.  Google Scholar

[12]

Comp. Optim. Appl., DOI: 10.1007/s10589-009-9310-1, (2010). doi: 10.1007/s10589-009-9310-1.  Google Scholar

[13]

Computing, 41 (1989), 349-358. doi: 10.1007/BF02241223.  Google Scholar

[14]

SIAM J. Control Optim., 31 (1993), 569-603. doi: 10.1137/0331026.  Google Scholar

[15]

Math. Comp., 70 (2001), 173-203. doi: 10.1090/S0025-5718-00-01184-4.  Google Scholar

[16]

Numer. Funct. Anal. Optim., 21 (2000), 653-682. doi: 10.1080/01630560008816979.  Google Scholar

[17]

North Holland, Amsterdam-Oxford, 1976.  Google Scholar

[18]

SIAM J. Control Optim., 41 (2003), 1843-1867. doi: 10.1137/S0363012901399271.  Google Scholar

[19]

Control Cybernet., 37 (2008), 307-327.  Google Scholar

[20]

in "Lecture Notes Comp. Sci., Vol. 5910" (eds. I. Lirkov et al.), Springer-Verlag, (2010), 264-271. Google Scholar

[21]

Control Cybernet., 38 (2009), 1305-1325.  Google Scholar

[22]

Robert E. Krieger Publ. Co., 1980.  Google Scholar

[23]

Comp. Optim. Appl., 30 (2005), 45-61. doi: 10.1007/s10589-005-4559-5.  Google Scholar

[24]

in "Mathematical Programming with Data Perturbations V" (ed. A. V. Fiacco), Lecture Notes in Pure and Applied Mathematics 195, Marcel Dekker, (1997), 253-284. Google Scholar

[25]

Optimal Control Appl. Methods, 26 (2005), 129-156. doi: 10.1002/oca.756.  Google Scholar

[26]

SIAM J. Control Optim., 42 (2004), 2239-2263. doi: 10.1137/S0363012902402578.  Google Scholar

[27]

ESAIM, Math. Model. Numer. Anal., 44 (2010), 167-188. doi: 10.1051/m2an/2009045.  Google Scholar

[28]

SIAM J. Contr. Optim., 43 (2004), 970-985. doi: 10.1137/S0363012903431608.  Google Scholar

[29]

Wiley-Interscience, 1988.  Google Scholar

[30]

Springer-Verlag, 1994. Google Scholar

[31]

SIAM J. Control Optim., 35 (1997), 1470-1486. doi: 10.1137/S0363012995288987.  Google Scholar

[32]

Control Cybernet., 34 (2005), 967-982.  Google Scholar

[33]

SIAM J. Control Optim., 28 (1990), 1148-1161. doi: 10.1137/0328062.  Google Scholar

[1]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[2]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[3]

Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279

[4]

Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control & Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005

[5]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[6]

Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021002

[7]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[8]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[9]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

[10]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021034

[11]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[12]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[13]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[14]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[15]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[16]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020040

[17]

M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511

[18]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[19]

Qi Lü, Tianxiao Wang, Xu Zhang. Characterization of optimal feedback for stochastic linear quadratic control problems. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 11-. doi: 10.1186/s41546-017-0022-7

[20]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (27)

[Back to Top]