Citation: |
[1] |
B. Açikmeşe and L. Blackmore, Lossless convexification of a class of optimal control problems with non-convex control constraints, Automatica, 47 (2011), 341-347.doi: 10.1016/j.automatica.2010.10.037. |
[2] |
N. U. Ahmed, "Dynamic Systems and Control with Applications," World Scientific, Singapore, 2006.doi: 10.1142/6262. |
[3] |
C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics, 120 (2000), 85-108.doi: 10.1016/S0377-0427(00)00305-8. |
[4] |
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270. |
[5] |
C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18.doi: 10.1016/0005-1098(88)90003-9. |
[6] |
L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica, 26 (1990), 371-375.doi: 10.1016/0005-1098(90)90131-Z. |
[7] |
A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis," Dover edition, Dover Publications, New York, 1975. |
[8] |
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.doi: 10.1007/s10957-011-9904-5. |
[9] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81. |
[10] |
R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.doi: 10.1016/j.automatica.2008.04.011. |
[11] |
R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.doi: 10.1016/j.automatica.2008.10.031. |
[12] |
R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029. |
[13] |
D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition, Springer, New York, 2008. |
[14] |
J. Nocedal and S. J. Wright, "Numerical Optimization," 2nd edition, Springer, New York, 2006. |
[15] |
H. L. Royden and P. M. Fitzpatrick, "Real Analysis," 4th edition, Prentice Hall, Boston, 2010. |
[16] |
W. Rudin, "Principles of Mathematical Analysis," 3rd edition, McGraw-Hill, New York, 1976. |
[17] |
K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Longman Scientific and Technical, Essex, 1991. |
[18] |
K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 335-357.doi: 10.1007/BF00941572. |
[19] |
K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica, 29 (1993), 789-792.doi: 10.1016/0005-1098(93)90076-6. |
[20] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718.doi: 10.3934/jimo.2009.5.705. |
[21] |
C. Yu, K. L. Teo, L. Zhang and Y. Bai, A new exact penalty method for semi-infinite programming problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.doi: 10.3934/jimo.2010.6.895. |
[22] |
Y. Zhao and M. A. Stadtherr, Rigorous global optimization method for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693.doi: http://dx.doi.org/10.1021/ie200996f. |