2012, 2(3): 571-599. doi: 10.3934/naco.2012.2.571

Control parameterization for optimal control problems with continuous inequality constraints: New convergence results

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845

2. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

Received  March 2012 Revised  May 2012 Published  August 2012

Control parameterization is a powerful numerical technique for solving optimal control problems with general nonlinear constraints. The main idea of control parameterization is to discretize the control space by approximating the control by a piecewise-constant or piecewise-linear function, thereby yielding an approximate nonlinear programming problem. This approximate problem can then be solved using standard gradient-based optimization techniques. In this paper, we consider the control parameterization method for a class of optimal control problems in which the admissible controls are functions of bounded variation and the state and control are subject to continuous inequality constraints. We show that control parameterization generates a sequence of suboptimal controls whose costs converge to the true optimal cost. This result has previously only been proved for the case when the admissible controls are restricted to piecewise continuous functions.
Citation: Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571
References:
[1]

B. Açikmeşe and L. Blackmore, Lossless convexification of a class of optimal control problems with non-convex control constraints, Automatica, 47 (2011), 341-347. doi: 10.1016/j.automatica.2010.10.037.

[2]

N. U. Ahmed, "Dynamic Systems and Control with Applications," World Scientific, Singapore, 2006. doi: 10.1142/6262.

[3]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics, 120 (2000), 85-108. doi: 10.1016/S0377-0427(00)00305-8.

[4]

M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.

[5]

C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18. doi: 10.1016/0005-1098(88)90003-9.

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.

[7]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis," Dover edition, Dover Publications, New York, 1975.

[8]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291. doi: 10.1007/s10957-011-9904-5.

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81.

[10]

R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.

[11]

R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980. doi: 10.1016/j.automatica.2008.10.031.

[12]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257. doi: 10.1016/j.automatica.2009.05.029.

[13]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition, Springer, New York, 2008.

[14]

J. Nocedal and S. J. Wright, "Numerical Optimization," 2nd edition, Springer, New York, 2006.

[15]

H. L. Royden and P. M. Fitzpatrick, "Real Analysis," 4th edition, Prentice Hall, Boston, 2010.

[16]

W. Rudin, "Principles of Mathematical Analysis," 3rd edition, McGraw-Hill, New York, 1976.

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Longman Scientific and Technical, Essex, 1991.

[18]

K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 335-357. doi: 10.1007/BF00941572.

[19]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica, 29 (1993), 789-792. doi: 10.1016/0005-1098(93)90076-6.

[20]

L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718. doi: 10.3934/jimo.2009.5.705.

[21]

C. Yu, K. L. Teo, L. Zhang and Y. Bai, A new exact penalty method for semi-infinite programming problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910. doi: 10.3934/jimo.2010.6.895.

[22]

Y. Zhao and M. A. Stadtherr, Rigorous global optimization method for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693. doi: http://dx.doi.org/10.1021/ie200996f.

show all references

References:
[1]

B. Açikmeşe and L. Blackmore, Lossless convexification of a class of optimal control problems with non-convex control constraints, Automatica, 47 (2011), 341-347. doi: 10.1016/j.automatica.2010.10.037.

[2]

N. U. Ahmed, "Dynamic Systems and Control with Applications," World Scientific, Singapore, 2006. doi: 10.1142/6262.

[3]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics, 120 (2000), 85-108. doi: 10.1016/S0377-0427(00)00305-8.

[4]

M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.

[5]

C. J. Goh and K. L. Teo, Control parametrization: A unified approach to optimal control problems with general constraints, Automatica, 24 (1988), 3-18. doi: 10.1016/0005-1098(88)90003-9.

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.

[7]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis," Dover edition, Dover Publications, New York, 1975.

[8]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291. doi: 10.1007/s10957-011-9904-5.

[9]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81.

[10]

R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.

[11]

R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980. doi: 10.1016/j.automatica.2008.10.031.

[12]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257. doi: 10.1016/j.automatica.2009.05.029.

[13]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition, Springer, New York, 2008.

[14]

J. Nocedal and S. J. Wright, "Numerical Optimization," 2nd edition, Springer, New York, 2006.

[15]

H. L. Royden and P. M. Fitzpatrick, "Real Analysis," 4th edition, Prentice Hall, Boston, 2010.

[16]

W. Rudin, "Principles of Mathematical Analysis," 3rd edition, McGraw-Hill, New York, 1976.

[17]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Longman Scientific and Technical, Essex, 1991.

[18]

K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 335-357. doi: 10.1007/BF00941572.

[19]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica, 29 (1993), 789-792. doi: 10.1016/0005-1098(93)90076-6.

[20]

L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718. doi: 10.3934/jimo.2009.5.705.

[21]

C. Yu, K. L. Teo, L. Zhang and Y. Bai, A new exact penalty method for semi-infinite programming problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910. doi: 10.3934/jimo.2010.6.895.

[22]

Y. Zhao and M. A. Stadtherr, Rigorous global optimization method for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693. doi: http://dx.doi.org/10.1021/ie200996f.

[1]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[2]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[3]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[4]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021

[5]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[6]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[7]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[8]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[9]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[10]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[11]

Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046

[12]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[13]

Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030

[14]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[15]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[16]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[17]

Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021047

[18]

Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 279-291. doi: 10.3934/naco.2021005

[19]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[20]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

 Impact Factor: 

Metrics

  • PDF downloads (162)
  • HTML views (0)
  • Cited by (36)

Other articles
by authors

[Back to Top]