Advanced Search
Article Contents
Article Contents

Optimal control strategies for tuberculosis treatment: A case study in Angola

Abstract Related Papers Cited by
  • We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.
    Mathematics Subject Classification: Primary: 92D30; Secondary: 49M05.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics 17, Springer-Verlag, New York, 1983.


    A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26.doi: 10.1016/j.mbs.2009.08.004.


    C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country, Journal of the American Medical Association, 282 (1999), 677-686.doi: 10.1001/jama.282.7.677.


    W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.


    M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, Journal of Theoretical Biology, 248 (2007), 608-617.doi: 10.1016/j.jtbi.2007.06.005.


    L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual," Version 3.3, Department of Mathematics, The University of Western Australia, Nedlands, Australia, 2004.


    E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473-482.doi: 10.3934/dcdsb.2002.2.473.


    M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review, Tropical Medicine and International Health, 13 (2008), 703-712.doi: 10.1111/j.1365-3156.2008.02042.x.


    U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. Biol., 27 (2010), 157-179.doi: 10.1093/imammb/dqp012.


    U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323.doi: 10.3934/mbe.2011.8.307.


    S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC, Boca Raton, FL, 2007.


    R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica J. IFAC, 44 (2008), 2923-2929.doi: 10.1016/j.automatica.2008.04.011.


    L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, 1962.


    H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control, Math. Comput. Modelling, 52 (2010), 1667-1673.doi: 10.1016/j.mcm.2010.06.034.


    H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control, Int. J. Comput. Math., 89 (2012), 334-346.doi: 10.1080/00207160.2011.554540.


    P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States, N. Engl. J. Med., 345 (2001), 189-200.doi: 10.1056/NEJM200107193450307.


    K. Styblo, State of art: epidemiology of tuberculosis, Bull. Int. Union Tuberc., 53 (1978), 141-152.


    K. Styblo, "Selected Papers, Epidemiology of Tuberculosis," Royal Netherlands Tuberculosis Association, 24, 1991.


    K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Sci. Tech., Harlow, 1991.


    WHO, Treatment of tuberculosis guidelines, Fourth edition, WHO, Geneva, 2010. Available from: http://www.who.int/tb/publications/tb_treatmentguidelines/en/index.html.


    WHO, Global Tuberculosis Control, WHO Report 2011, Geneva, 2011. Available from: http://www.who.int/tb/publications/global_report/en/index.html.

  • 加载中

Article Metrics

HTML views() PDF downloads(229) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint