\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control strategies for tuberculosis treatment: A case study in Angola

Abstract Related Papers Cited by
  • We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.
    Mathematics Subject Classification: Primary: 92D30; Secondary: 49M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics 17, Springer-Verlag, New York, 1983.

    [2]

    A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26.doi: 10.1016/j.mbs.2009.08.004.

    [3]

    C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country, Journal of the American Medical Association, 282 (1999), 677-686.doi: 10.1001/jama.282.7.677.

    [4]

    W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.

    [5]

    M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, Journal of Theoretical Biology, 248 (2007), 608-617.doi: 10.1016/j.jtbi.2007.06.005.

    [6]

    L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual," Version 3.3, Department of Mathematics, The University of Western Australia, Nedlands, Australia, 2004.

    [7]

    E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473-482.doi: 10.3934/dcdsb.2002.2.473.

    [8]

    M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review, Tropical Medicine and International Health, 13 (2008), 703-712.doi: 10.1111/j.1365-3156.2008.02042.x.

    [9]

    U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. Biol., 27 (2010), 157-179.doi: 10.1093/imammb/dqp012.

    [10]

    U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323.doi: 10.3934/mbe.2011.8.307.

    [11]

    S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC, Boca Raton, FL, 2007.

    [12]

    R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica J. IFAC, 44 (2008), 2923-2929.doi: 10.1016/j.automatica.2008.04.011.

    [13]

    L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, 1962.

    [14]

    H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control, Math. Comput. Modelling, 52 (2010), 1667-1673.doi: 10.1016/j.mcm.2010.06.034.

    [15]

    H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control, Int. J. Comput. Math., 89 (2012), 334-346.doi: 10.1080/00207160.2011.554540.

    [16]

    P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States, N. Engl. J. Med., 345 (2001), 189-200.doi: 10.1056/NEJM200107193450307.

    [17]

    K. Styblo, State of art: epidemiology of tuberculosis, Bull. Int. Union Tuberc., 53 (1978), 141-152.

    [18]

    K. Styblo, "Selected Papers, Epidemiology of Tuberculosis," Royal Netherlands Tuberculosis Association, 24, 1991.

    [19]

    K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Sci. Tech., Harlow, 1991.

    [20]

    WHO, Treatment of tuberculosis guidelines, Fourth edition, WHO, Geneva, 2010. Available from: http://www.who.int/tb/publications/tb_treatmentguidelines/en/index.html.

    [21]

    WHO, Global Tuberculosis Control, WHO Report 2011, Geneva, 2011. Available from: http://www.who.int/tb/publications/global_report/en/index.html.

    [22]
    [23]
    [24]
    [25]
    [26]
    [27]
    [28]
    [29]
    [30]
    [31]
    [32]
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(229) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return