• Previous Article
    Noether's symmetry Theorem for variational and optimal control problems with time delay
  • NACO Home
  • This Issue
  • Next Article
    Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
2012, 2(3): 601-617. doi: 10.3934/naco.2012.2.601

Optimal control strategies for tuberculosis treatment: A case study in Angola

1. 

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

2. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received  March 2012 Revised  March 2012 Published  August 2012

We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.
Citation: Cristiana J. Silva, Delfim F. M. Torres. Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 601-617. doi: 10.3934/naco.2012.2.601
References:
[1]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics 17, Springer-Verlag, New York, 1983.  Google Scholar

[2]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26. doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[3]

C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country, Journal of the American Medical Association, 282 (1999), 677-686. doi: 10.1001/jama.282.7.677.  Google Scholar

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.  Google Scholar

[5]

M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, Journal of Theoretical Biology, 248 (2007), 608-617. doi: 10.1016/j.jtbi.2007.06.005.  Google Scholar

[6]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual," Version 3.3, Department of Mathematics, The University of Western Australia, Nedlands, Australia, 2004. Google Scholar

[7]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473-482. doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[8]

M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review, Tropical Medicine and International Health, 13 (2008), 703-712. doi: 10.1111/j.1365-3156.2008.02042.x.  Google Scholar

[9]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. Biol., 27 (2010), 157-179. doi: 10.1093/imammb/dqp012.  Google Scholar

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323. doi: 10.3934/mbe.2011.8.307.  Google Scholar

[11]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica J. IFAC, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[13]

L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, 1962.  Google Scholar

[14]

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control, Math. Comput. Modelling, 52 (2010), 1667-1673. doi: 10.1016/j.mcm.2010.06.034.  Google Scholar

[15]

H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control, Int. J. Comput. Math., 89 (2012), 334-346. doi: 10.1080/00207160.2011.554540.  Google Scholar

[16]

P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States, N. Engl. J. Med., 345 (2001), 189-200. doi: 10.1056/NEJM200107193450307.  Google Scholar

[17]

K. Styblo, State of art: epidemiology of tuberculosis, Bull. Int. Union Tuberc., 53 (1978), 141-152. Google Scholar

[18]

K. Styblo, "Selected Papers, Epidemiology of Tuberculosis," Royal Netherlands Tuberculosis Association, 24, 1991. Google Scholar

[19]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Sci. Tech., Harlow, 1991.  Google Scholar

[20]

WHO, Treatment of tuberculosis guidelines, Fourth edition, WHO, Geneva, 2010. Available from: http://www.who.int/tb/publications/tb_treatmentguidelines/en/index.html. Google Scholar

[21]

WHO, Global Tuberculosis Control, WHO Report 2011, Geneva, 2011. Available from: http://www.who.int/tb/publications/global_report/en/index.html. Google Scholar

[22]

, Available from:, , ().   Google Scholar

[23]

, Available from:, , ().   Google Scholar

[24]

, Available from:, , ().   Google Scholar

[25]

, Available from:, , ().   Google Scholar

[26]

, Available from:, , ().   Google Scholar

[27]

, Available from:, , ().   Google Scholar

[28]

, Available from:, , ().   Google Scholar

[29]

, Available from:, , ().   Google Scholar

[30]

, Available from:, , ().   Google Scholar

[31]

, Available from:, , ().   Google Scholar

[32]

, Available from:, , ().   Google Scholar

show all references

References:
[1]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics 17, Springer-Verlag, New York, 1983.  Google Scholar

[2]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26. doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[3]

C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country, Journal of the American Medical Association, 282 (1999), 677-686. doi: 10.1001/jama.282.7.677.  Google Scholar

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.  Google Scholar

[5]

M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, Journal of Theoretical Biology, 248 (2007), 608-617. doi: 10.1016/j.jtbi.2007.06.005.  Google Scholar

[6]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual," Version 3.3, Department of Mathematics, The University of Western Australia, Nedlands, Australia, 2004. Google Scholar

[7]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473-482. doi: 10.3934/dcdsb.2002.2.473.  Google Scholar

[8]

M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review, Tropical Medicine and International Health, 13 (2008), 703-712. doi: 10.1111/j.1365-3156.2008.02042.x.  Google Scholar

[9]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. Biol., 27 (2010), 157-179. doi: 10.1093/imammb/dqp012.  Google Scholar

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323. doi: 10.3934/mbe.2011.8.307.  Google Scholar

[11]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica J. IFAC, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[13]

L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes," Wiley Interscience, 1962.  Google Scholar

[14]

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control, Math. Comput. Modelling, 52 (2010), 1667-1673. doi: 10.1016/j.mcm.2010.06.034.  Google Scholar

[15]

H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control, Int. J. Comput. Math., 89 (2012), 334-346. doi: 10.1080/00207160.2011.554540.  Google Scholar

[16]

P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States, N. Engl. J. Med., 345 (2001), 189-200. doi: 10.1056/NEJM200107193450307.  Google Scholar

[17]

K. Styblo, State of art: epidemiology of tuberculosis, Bull. Int. Union Tuberc., 53 (1978), 141-152. Google Scholar

[18]

K. Styblo, "Selected Papers, Epidemiology of Tuberculosis," Royal Netherlands Tuberculosis Association, 24, 1991. Google Scholar

[19]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Sci. Tech., Harlow, 1991.  Google Scholar

[20]

WHO, Treatment of tuberculosis guidelines, Fourth edition, WHO, Geneva, 2010. Available from: http://www.who.int/tb/publications/tb_treatmentguidelines/en/index.html. Google Scholar

[21]

WHO, Global Tuberculosis Control, WHO Report 2011, Geneva, 2011. Available from: http://www.who.int/tb/publications/global_report/en/index.html. Google Scholar

[22]

, Available from:, , ().   Google Scholar

[23]

, Available from:, , ().   Google Scholar

[24]

, Available from:, , ().   Google Scholar

[25]

, Available from:, , ().   Google Scholar

[26]

, Available from:, , ().   Google Scholar

[27]

, Available from:, , ().   Google Scholar

[28]

, Available from:, , ().   Google Scholar

[29]

, Available from:, , ().   Google Scholar

[30]

, Available from:, , ().   Google Scholar

[31]

, Available from:, , ().   Google Scholar

[32]

, Available from:, , ().   Google Scholar

[1]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[2]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[3]

Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151

[4]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[5]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[6]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[7]

E. Jung, Suzanne Lenhart, Z. Feng. Optimal control of treatments in a two-strain tuberculosis model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 473-482. doi: 10.3934/dcdsb.2002.2.473

[8]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[9]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[10]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[11]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[12]

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369

[13]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[14]

Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial & Management Optimization, 2015, 11 (1) : 199-216. doi: 10.3934/jimo.2015.11.199

[15]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[16]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[17]

Nasser H. Sweilam, Taghreed A. Assiri, Muner M. Abou Hasan. Optimal control problem of variable-order delay system of advertising procedure: Numerical treatment. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021085

[18]

Jesús-Javier Chi-Domínguez, Francisco Rodríguez-Henríquez. Optimal strategies for CSIDH. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020116

[19]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[20]

Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739

 Impact Factor: 

Metrics

  • PDF downloads (184)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]