2012, 2(3): 619-630. doi: 10.3934/naco.2012.2.619

Noether's symmetry Theorem for variational and optimal control problems with time delay

1. 

Department of Science and Technology, University of Cape Verde, Praia, Santiago, Cape Verde, Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

2. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received  March 2012 Revised  March 2012 Published  August 2012

We extend the DuBois--Reymond necessary optimality condition and Noether's symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether's theorem are proved, covering problems of the calculus of variations and optimal control with delays.
Citation: Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619
References:
[1]

J. Math. Anal. Appl., 210 (1997), 702-711. doi: 10.1006/jmaa.1997.5427.  Google Scholar

[2]

J. Math. Anal. Appl., 342 (2008), 1220-1226. doi: 10.1016/j.jmaa.2008.01.018.  Google Scholar

[3]

Lecture Notes in Control and Information Sciences, 380, Springer, Berlin, 2008.  Google Scholar

[4]

J. Math. Sci. (N. Y.), 172 (2011), 623-634. doi: 10.1007/s10958-011-0208-y.  Google Scholar

[5]

Topol. Methods Nonlinear Anal., 33 (2009), 217-231.  Google Scholar

[6]

Ph.D. thesis, University of Cape Verde, 2009. Google Scholar

[7]

Int. J. Tomogr. Stat., 5 (2007), 109-114.  Google Scholar

[8]

J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.  Google Scholar

[9]

Appl. Math. Comput., 217 (2010), 1023-1033. doi: 10.1016/j.amc.2010.01.100.  Google Scholar

[10]

Optimal Control Appl. Methods, 30 (2009), 341-365. doi: 10.1002/oca.843.  Google Scholar

[11]

Comput. Methods Appl. Math., 5 (2005), 387-409.  Google Scholar

[12]

Nonlinear Anal., 71 (2009), e138-e146. doi: 10.1016/j.na.2008.10.009.  Google Scholar

[13]

Control Cybernet., 35 (2006), 831-849.  Google Scholar

[14]

J. Optimization Theory Appl., 2 (1968), 1-14. doi: 10.1007/BF00927159.  Google Scholar

[15]

in "Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967)", 26-34, Academic Press, New York, 1967.  Google Scholar

[16]

J. Math. Sci. (N. Y.), 140 (2007), 1-175. doi: 10.1007/s10958-007-0412-y.  Google Scholar

[17]

Appl. Math. Lett., 23 (2010), 1432-1438. doi: 10.1016/j.aml.2010.07.013.  Google Scholar

[18]

Mathematics in Science and Engineering, 24 Academic Press, New York, 1966.  Google Scholar

[19]

Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc., New York, 1962.  Google Scholar

[20]

Control Cybernet., 35 (2006), 947-963.  Google Scholar

[21]

in "Dynamics, bifurcations, and control (Kloster Irsee, 2001)", 287-296, Lecture Notes in Control and Inform. Sci., 273 Springer, Berlin, 2002.  Google Scholar

[22]

in "Symmetry in Nonlinear Mathematical Physics. Part 1, 2, 3", 1488-1495, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Part 1, 2, 3 Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2004.  Google Scholar

[23]

J. Math. Sci. (N. Y.), 120 (2004), 1032-1050. doi: 10.1023/B:JOTH.0000013565.78376.fb.  Google Scholar

[24]

Commun. Pure Appl. Anal., 3 (2004), 491-500. doi: 10.3934/cpaa.2004.3.491.  Google Scholar

show all references

References:
[1]

J. Math. Anal. Appl., 210 (1997), 702-711. doi: 10.1006/jmaa.1997.5427.  Google Scholar

[2]

J. Math. Anal. Appl., 342 (2008), 1220-1226. doi: 10.1016/j.jmaa.2008.01.018.  Google Scholar

[3]

Lecture Notes in Control and Information Sciences, 380, Springer, Berlin, 2008.  Google Scholar

[4]

J. Math. Sci. (N. Y.), 172 (2011), 623-634. doi: 10.1007/s10958-011-0208-y.  Google Scholar

[5]

Topol. Methods Nonlinear Anal., 33 (2009), 217-231.  Google Scholar

[6]

Ph.D. thesis, University of Cape Verde, 2009. Google Scholar

[7]

Int. J. Tomogr. Stat., 5 (2007), 109-114.  Google Scholar

[8]

J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.  Google Scholar

[9]

Appl. Math. Comput., 217 (2010), 1023-1033. doi: 10.1016/j.amc.2010.01.100.  Google Scholar

[10]

Optimal Control Appl. Methods, 30 (2009), 341-365. doi: 10.1002/oca.843.  Google Scholar

[11]

Comput. Methods Appl. Math., 5 (2005), 387-409.  Google Scholar

[12]

Nonlinear Anal., 71 (2009), e138-e146. doi: 10.1016/j.na.2008.10.009.  Google Scholar

[13]

Control Cybernet., 35 (2006), 831-849.  Google Scholar

[14]

J. Optimization Theory Appl., 2 (1968), 1-14. doi: 10.1007/BF00927159.  Google Scholar

[15]

in "Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967)", 26-34, Academic Press, New York, 1967.  Google Scholar

[16]

J. Math. Sci. (N. Y.), 140 (2007), 1-175. doi: 10.1007/s10958-007-0412-y.  Google Scholar

[17]

Appl. Math. Lett., 23 (2010), 1432-1438. doi: 10.1016/j.aml.2010.07.013.  Google Scholar

[18]

Mathematics in Science and Engineering, 24 Academic Press, New York, 1966.  Google Scholar

[19]

Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc., New York, 1962.  Google Scholar

[20]

Control Cybernet., 35 (2006), 947-963.  Google Scholar

[21]

in "Dynamics, bifurcations, and control (Kloster Irsee, 2001)", 287-296, Lecture Notes in Control and Inform. Sci., 273 Springer, Berlin, 2002.  Google Scholar

[22]

in "Symmetry in Nonlinear Mathematical Physics. Part 1, 2, 3", 1488-1495, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Part 1, 2, 3 Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2004.  Google Scholar

[23]

J. Math. Sci. (N. Y.), 120 (2004), 1032-1050. doi: 10.1023/B:JOTH.0000013565.78376.fb.  Google Scholar

[24]

Commun. Pure Appl. Anal., 3 (2004), 491-500. doi: 10.3934/cpaa.2004.3.491.  Google Scholar

[1]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[2]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[3]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[4]

Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021063

[5]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[6]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[7]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[8]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[9]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[10]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[11]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[14]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[17]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[18]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[19]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[20]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

 Impact Factor: 

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]