2012, 2(3): 631-654. doi: 10.3934/naco.2012.2.631

Perturbation feedback control: A geometric interpretation

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL 62026

Received  September 2011 Revised  March 2012 Published  August 2012

Perturbation feedback control is a classical procedure in control engineering that is based on linearizing a nonlinear system around some locally optimal nominal trajectory. In the presence of terminal constraints defined by a $k$-dimensional embedded submanifold, the corresponding flow of extremals for the underlying system gives rise to a canonical foliation in the $(t,x)$-space consisting of $(n-k+1)$-dimensional leaves and $k$-dimensional cross sections. In this paper, the connections between the formal computations in the engineering literature and the geometric meaning underlying these constructions are described.
Citation: Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631
References:
[1]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer Verlag, (2004).   Google Scholar

[2]

A. Agrachev, G. Stefani and P. L. Zezza, A Hamiltonian approach to strong minima in optimal control,, in, (1999), 11.   Google Scholar

[3]

A. Agrachev, G. Stefani and P. L. Zezza, Strong optimality for a bang-bang trajectory,, SIAM J. Control and Optimization, 41 (2002), 991.  doi: 10.1137/S036301290138866X.  Google Scholar

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Mathématiques & Applications, (2003).   Google Scholar

[5]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193.   Google Scholar

[6]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007).   Google Scholar

[7]

A. E. Bryson, jr. and Y. C. Ho, "Applied Optimal Control,", Revised Printing, (1975).   Google Scholar

[8]

M. E. Fisher, W. J. Grantham and K. L. Teo, Neighbouring extremals for nonlinear systems with control constraints,, Dynamics and Control, 5 (1995), 225.  doi: 10.1007/BF01968675.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,", Springer-Verlag, (1973).  doi: 10.1007/978-1-4615-7904-5.  Google Scholar

[10]

D. H. Jacobson, D. H. Martin, M. Pachter and T. Geveci, "Extensions of Linear-Quadratic Control Theory,", Lecture Notes in Control and Information Sciences, (1980).   Google Scholar

[11]

T. Kailath, "Linear Systems,", Prentice Hall, (1980).   Google Scholar

[12]

H. W. Knobloch and H. Kwakernaak, "Lineare Kontrolltheorie,", Springer Verlag, (1985).  doi: 10.1007/978-3-642-69884-2.  Google Scholar

[13]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM J. on Control and Optimization, 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[14]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals,, J. of Mathematical Analysis and Applications, 269 (2002), 98.  doi: 10.1016/S0022-247X(02)00008-2.  Google Scholar

[15]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 105.  doi: 10.1023/B:JOTA.0000042525.50701.9a.  Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964).   Google Scholar

[17]

H. Schättler, On classical envelopes in optimal control theory,, in, (2010), 1879.   Google Scholar

[18]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control,", Springer Verlag, (2012).   Google Scholar

[19]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.   Google Scholar

[20]

H. Schättler and U. Ledzewicz, Lyapunov-Schmidt reduction for optimal control problems,, Discrete and Continuous Dynamical Systems, 17 (2012), 2201.   Google Scholar

[21]

H. J. Sussmann, Envelopes, high-order optimality conditions and Lie brackets,, in, (1989), 1107.  doi: 10.1109/CDC.1989.70305.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer Verlag, (2004).   Google Scholar

[2]

A. Agrachev, G. Stefani and P. L. Zezza, A Hamiltonian approach to strong minima in optimal control,, in, (1999), 11.   Google Scholar

[3]

A. Agrachev, G. Stefani and P. L. Zezza, Strong optimality for a bang-bang trajectory,, SIAM J. Control and Optimization, 41 (2002), 991.  doi: 10.1137/S036301290138866X.  Google Scholar

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Mathématiques & Applications, (2003).   Google Scholar

[5]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193.   Google Scholar

[6]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007).   Google Scholar

[7]

A. E. Bryson, jr. and Y. C. Ho, "Applied Optimal Control,", Revised Printing, (1975).   Google Scholar

[8]

M. E. Fisher, W. J. Grantham and K. L. Teo, Neighbouring extremals for nonlinear systems with control constraints,, Dynamics and Control, 5 (1995), 225.  doi: 10.1007/BF01968675.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,", Springer-Verlag, (1973).  doi: 10.1007/978-1-4615-7904-5.  Google Scholar

[10]

D. H. Jacobson, D. H. Martin, M. Pachter and T. Geveci, "Extensions of Linear-Quadratic Control Theory,", Lecture Notes in Control and Information Sciences, (1980).   Google Scholar

[11]

T. Kailath, "Linear Systems,", Prentice Hall, (1980).   Google Scholar

[12]

H. W. Knobloch and H. Kwakernaak, "Lineare Kontrolltheorie,", Springer Verlag, (1985).  doi: 10.1007/978-3-642-69884-2.  Google Scholar

[13]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM J. on Control and Optimization, 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[14]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals,, J. of Mathematical Analysis and Applications, 269 (2002), 98.  doi: 10.1016/S0022-247X(02)00008-2.  Google Scholar

[15]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 105.  doi: 10.1023/B:JOTA.0000042525.50701.9a.  Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964).   Google Scholar

[17]

H. Schättler, On classical envelopes in optimal control theory,, in, (2010), 1879.   Google Scholar

[18]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control,", Springer Verlag, (2012).   Google Scholar

[19]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.   Google Scholar

[20]

H. Schättler and U. Ledzewicz, Lyapunov-Schmidt reduction for optimal control problems,, Discrete and Continuous Dynamical Systems, 17 (2012), 2201.   Google Scholar

[21]

H. J. Sussmann, Envelopes, high-order optimality conditions and Lie brackets,, in, (1989), 1107.  doi: 10.1109/CDC.1989.70305.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[6]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[7]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[10]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[14]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[15]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[16]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[17]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

 Impact Factor: 

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]