2012, 2(3): 631-654. doi: 10.3934/naco.2012.2.631

Perturbation feedback control: A geometric interpretation

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL 62026

Received  September 2011 Revised  March 2012 Published  August 2012

Perturbation feedback control is a classical procedure in control engineering that is based on linearizing a nonlinear system around some locally optimal nominal trajectory. In the presence of terminal constraints defined by a $k$-dimensional embedded submanifold, the corresponding flow of extremals for the underlying system gives rise to a canonical foliation in the $(t,x)$-space consisting of $(n-k+1)$-dimensional leaves and $k$-dimensional cross sections. In this paper, the connections between the formal computations in the engineering literature and the geometric meaning underlying these constructions are described.
Citation: Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631
References:
[1]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer Verlag, (2004). Google Scholar

[2]

A. Agrachev, G. Stefani and P. L. Zezza, A Hamiltonian approach to strong minima in optimal control,, in, (1999), 11. Google Scholar

[3]

A. Agrachev, G. Stefani and P. L. Zezza, Strong optimality for a bang-bang trajectory,, SIAM J. Control and Optimization, 41 (2002), 991. doi: 10.1137/S036301290138866X. Google Scholar

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Mathématiques & Applications, (2003). Google Scholar

[5]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193. Google Scholar

[6]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007). Google Scholar

[7]

A. E. Bryson, jr. and Y. C. Ho, "Applied Optimal Control,", Revised Printing, (1975). Google Scholar

[8]

M. E. Fisher, W. J. Grantham and K. L. Teo, Neighbouring extremals for nonlinear systems with control constraints,, Dynamics and Control, 5 (1995), 225. doi: 10.1007/BF01968675. Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,", Springer-Verlag, (1973). doi: 10.1007/978-1-4615-7904-5. Google Scholar

[10]

D. H. Jacobson, D. H. Martin, M. Pachter and T. Geveci, "Extensions of Linear-Quadratic Control Theory,", Lecture Notes in Control and Information Sciences, (1980). Google Scholar

[11]

T. Kailath, "Linear Systems,", Prentice Hall, (1980). Google Scholar

[12]

H. W. Knobloch and H. Kwakernaak, "Lineare Kontrolltheorie,", Springer Verlag, (1985). doi: 10.1007/978-3-642-69884-2. Google Scholar

[13]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM J. on Control and Optimization, 41 (2002), 380. doi: 10.1137/S0363012900377419. Google Scholar

[14]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals,, J. of Mathematical Analysis and Applications, 269 (2002), 98. doi: 10.1016/S0022-247X(02)00008-2. Google Scholar

[15]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 105. doi: 10.1023/B:JOTA.0000042525.50701.9a. Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[17]

H. Schättler, On classical envelopes in optimal control theory,, in, (2010), 1879. Google Scholar

[18]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control,", Springer Verlag, (2012). Google Scholar

[19]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161. Google Scholar

[20]

H. Schättler and U. Ledzewicz, Lyapunov-Schmidt reduction for optimal control problems,, Discrete and Continuous Dynamical Systems, 17 (2012), 2201. Google Scholar

[21]

H. J. Sussmann, Envelopes, high-order optimality conditions and Lie brackets,, in, (1989), 1107. doi: 10.1109/CDC.1989.70305. Google Scholar

show all references

References:
[1]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer Verlag, (2004). Google Scholar

[2]

A. Agrachev, G. Stefani and P. L. Zezza, A Hamiltonian approach to strong minima in optimal control,, in, (1999), 11. Google Scholar

[3]

A. Agrachev, G. Stefani and P. L. Zezza, Strong optimality for a bang-bang trajectory,, SIAM J. Control and Optimization, 41 (2002), 991. doi: 10.1137/S036301290138866X. Google Scholar

[4]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Mathématiques & Applications, (2003). Google Scholar

[5]

J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation,, SIAM J. Control, 1 (1963), 193. Google Scholar

[6]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007). Google Scholar

[7]

A. E. Bryson, jr. and Y. C. Ho, "Applied Optimal Control,", Revised Printing, (1975). Google Scholar

[8]

M. E. Fisher, W. J. Grantham and K. L. Teo, Neighbouring extremals for nonlinear systems with control constraints,, Dynamics and Control, 5 (1995), 225. doi: 10.1007/BF01968675. Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,", Springer-Verlag, (1973). doi: 10.1007/978-1-4615-7904-5. Google Scholar

[10]

D. H. Jacobson, D. H. Martin, M. Pachter and T. Geveci, "Extensions of Linear-Quadratic Control Theory,", Lecture Notes in Control and Information Sciences, (1980). Google Scholar

[11]

T. Kailath, "Linear Systems,", Prentice Hall, (1980). Google Scholar

[12]

H. W. Knobloch and H. Kwakernaak, "Lineare Kontrolltheorie,", Springer Verlag, (1985). doi: 10.1007/978-3-642-69884-2. Google Scholar

[13]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach,, SIAM J. on Control and Optimization, 41 (2002), 380. doi: 10.1137/S0363012900377419. Google Scholar

[14]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals,, J. of Mathematical Analysis and Applications, 269 (2002), 98. doi: 10.1016/S0022-247X(02)00008-2. Google Scholar

[15]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 105. doi: 10.1023/B:JOTA.0000042525.50701.9a. Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[17]

H. Schättler, On classical envelopes in optimal control theory,, in, (2010), 1879. Google Scholar

[18]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control,", Springer Verlag, (2012). Google Scholar

[19]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161. Google Scholar

[20]

H. Schättler and U. Ledzewicz, Lyapunov-Schmidt reduction for optimal control problems,, Discrete and Continuous Dynamical Systems, 17 (2012), 2201. Google Scholar

[21]

H. J. Sussmann, Envelopes, high-order optimality conditions and Lie brackets,, in, (1989), 1107. doi: 10.1109/CDC.1989.70305. Google Scholar

[1]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[2]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[3]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

[4]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[5]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[6]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[7]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[8]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[9]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[10]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[11]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[12]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[13]

Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893

[14]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[15]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[16]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[17]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[18]

Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control & Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005

[19]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[20]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]