\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The integrated size and price optimization problem

Abstract / Introduction Related Papers Cited by
  • We present the Integrated Size and Price Optimization Problem (ISPO) for a fashion discounter with many branches. Based on a two-stage stochastic programming model with recourse, we develop an exact algorithm and a production-compliant heuristic that produces small optimality gaps. In a field study we show that a distribution of supply over branches and sizes based on ISPO solutions is significantly better than a one-stage optimization of the distribution ignoring the possibility of optimal pricing.
    Mathematics Subject Classification: Primary: 90B90, Secondary: 90B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Elodie Adida and Georgia Perakis, A robust optimization approach to dynamic pricing and inventory control with no backorders, Math. Program., 107 (2006), 97-129.doi: 10.1007/s10107-005-0681-5.

    [2]

    Elodie Adida and Georgia Perakis, Dynamic pricing and inventory control: Uncertainty and competition, Oper. Res., 58 (2010), 289-302.doi: 10.1287/opre.1090.0718.

    [3]

    Dimitris Bertsimas and Sanne de Boer, Dynamic pricing and inventory control for multiple products, JRPM, 3 (2005), 303-319.doi: 10.1057/palgrave.rpm.5170117.

    [4]

    John R. Birge and Francois Louveaux, "Introduction To Stochastic Programming," 2nd ed, Springer Series in Operations Research and Financial Engineering, New York, 2011.doi: 10.1007/978-1-4614-0237-4.

    [5]

    Gabriel Bitran and Reneé Caldentey, An overview of pricing models for revenue management, MSOM, 5 (2003), 203-229.doi: 10.1287/msom.5.3.203.16031.

    [6]

    Lap M. A. Chan, Zuo-Jun M. Shen, David Simchi-Levi and Julie Swann, Coordination of pricing and inventory decisions: A survey and classification, Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, (2004), 335-392.

    [7]

    Andreas Christmann and Ingo Steinwart, "Support Vector Machines," Information Science and Statistics, Springer, 2008.

    [8]

    Antonio J. Conejo, Enrique Castillo, Roberto Minguez and Raquel Garcia-Bertrand, "Decomposition Techniques in Mathematical Programming: Engineering and Science Applications," Springer, 2010.

    [9]

    Awi Federgruen and Aliza Heching, Combined pricing and inventory control under uncertainty, Oper. Res., 47 (1999), 454-475.doi: 10.1287/opre.47.3.454.

    [10]

    David Freedman, Robert Pisani and Roger Purves, "Statistics," 4th Edition, W. W. Norton & Company, 2007.

    [11]

    Constantin Gaul, Sascha Kurz and Jörg Rambau, On the lot-type design problem, Optim. Methods Softw., 25 (2010), 217-227.doi: 10.1080/10556780902965163.

    [12]

    Guillermo Gallego and Garrett van Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons, Manage. Sci., 40 (1994), 999-1020.doi: 10.1287/mnsc.40.8.999.

    [13]

    Guillermo Gallego and Garrett van Ryzin, A multiproduct dynamic pricing problem and its applications to network yield management, Oper. Res., 45 (1997), 24-41.doi: 10.1287/opre.45.1.24.

    [14]

    Lars Grüne and Jürgen Pannek, "Nonlinear Model Predictive Control," Communications and Control Engineering, Springer, 2011.doi: 10.1007/978-0-85729-501-9.

    [15]

    Miriam Kießling, Sascha Kurz and Jörg Rambau, An exact column-generation approach for the lot-type design problem, Preprint, Universität Bayreuth, 2012.

    [16]

    Kaisa M. Miettinen, "Evolutionary Algorithms In Engineering & Computer Science," John Wiley & Sons LTD, 1999.

    [17]

    Alan L. Montgomery, The implementation challenge of pricing decision support systems for retail managers, Appl. Stoch. Models Bus. Ind., 21 (2005), 367-378.doi: 10.1002/asmb.572.

    [18]

    Serguei Netessine, Dynamic pricing of inventory/capacity with infrequent price changes, Eur. J. Oper. Res., 174 (2006), 553-580.doi: 10.1016/j.ejor.2004.12.015.

    [19]

    Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, 1 (1945), 80-83.doi: 10.2307/3001968.

    [20]

    Rui Yin, Yossi Aviv, Amat Pazgal and Christopher S. Tang, Optimal markdown pricing: implications of inventory display formats in the presence of strategic customers, Manage. Sci., 55 (2009), 1391-1408.doi: 10.1287/mnsc.1090.1029.

    [21]

    Wen Zhao and Yu-Sheng Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Manage. Sci., 46 (2000), 375-388.doi: 10.1287/mnsc.46.3.375.12063.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return