-
Previous Article
Analyzing the computational impact of MIQCP solver components
- NACO Home
- This Issue
-
Next Article
Towards globally optimal operation of water supply networks
Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints
1. | Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Lotharstr. 65, D-47048 Duisburg, Germany |
References:
[1] |
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization,", Akademie-Verlag, (1983).
|
[2] |
B. Bank and R. Mandel, "Parametric Integer Optimization,", Akademie-Verlag, (1988).
|
[3] |
A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).
|
[4] |
J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming,", Springer-Verlag, (1997).
|
[5] |
C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I,, Discrete Mathematics, 19 (1977), 121.
|
[6] |
C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming,, Operations Research Letters, 24 (1999), 37.
|
[7] |
M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints,, Computational Management Science, 6 (2009), 233.
|
[8] |
P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, (1988).
|
[9] |
, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , (). Google Scholar |
[10] |
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective,, SIAM Journal on Optimization, 19 (2008), 1610.
|
[11] |
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization,, SIAM Journal on Control and Optimization, 49 (2011), 927.
|
[12] |
M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization,", SIAM, (2001).
|
[13] |
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints,, SIAM Journal on Optimization, 14 (2003), 548.
|
[14] |
D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints,, Mathematical Programming, 99 (2004), 329.
doi: 10.1007/s10107-003-0453-z. |
[15] |
R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse,, Mathematical Programming, 127 (2011), 179.
|
[16] |
R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse,, SIAM Journal on Optimization, 19 (2008), 552.
|
[17] |
U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse,", Department of Mathematics, (2008). Google Scholar |
[18] |
E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming,, International Journal of Electrical Power & Energy Systems, 28 (2006), 618. Google Scholar |
[19] |
A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse,", Department of Mathematics, (2008). Google Scholar |
[20] |
A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks,", Wiley, (2002).
|
[21] |
G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization,", Wiley, (1988).
|
[22] |
A. Prékopa, "Stochastic Programming,", Kluwer, (1995).
|
[23] |
A. Ruszczyński and A. Shapiro, "Stochastic Programming,", Handbooks in Operations Research and Management Science, 10 (2003).
|
[24] |
R. Schultz, Continuity properties of expectation functions in stochastic integer programming,, Mathematics of Operations Research, 18 (1993), 578.
|
[25] |
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse,, Mathematical Programming, 70 (1995), 73.
|
[26] |
R. Schultz, Stochastic programming with integer variables,, Mathematical Programming, 97 (2003), 285.
|
[27] |
R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse,, SIAM Journal on Optimization, 14 (2003), 115.
|
[28] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", SIAM-MPS, (2009).
|
[29] |
J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis,", Springer, (1992).
|
show all references
References:
[1] |
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization,", Akademie-Verlag, (1983).
|
[2] |
B. Bank and R. Mandel, "Parametric Integer Optimization,", Akademie-Verlag, (1988).
|
[3] |
A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).
|
[4] |
J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming,", Springer-Verlag, (1997).
|
[5] |
C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I,, Discrete Mathematics, 19 (1977), 121.
|
[6] |
C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming,, Operations Research Letters, 24 (1999), 37.
|
[7] |
M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints,, Computational Management Science, 6 (2009), 233.
|
[8] |
P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, (1988).
|
[9] |
, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , (). Google Scholar |
[10] |
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective,, SIAM Journal on Optimization, 19 (2008), 1610.
|
[11] |
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization,, SIAM Journal on Control and Optimization, 49 (2011), 927.
|
[12] |
M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization,", SIAM, (2001).
|
[13] |
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints,, SIAM Journal on Optimization, 14 (2003), 548.
|
[14] |
D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints,, Mathematical Programming, 99 (2004), 329.
doi: 10.1007/s10107-003-0453-z. |
[15] |
R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse,, Mathematical Programming, 127 (2011), 179.
|
[16] |
R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse,, SIAM Journal on Optimization, 19 (2008), 552.
|
[17] |
U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse,", Department of Mathematics, (2008). Google Scholar |
[18] |
E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming,, International Journal of Electrical Power & Energy Systems, 28 (2006), 618. Google Scholar |
[19] |
A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse,", Department of Mathematics, (2008). Google Scholar |
[20] |
A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks,", Wiley, (2002).
|
[21] |
G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization,", Wiley, (1988).
|
[22] |
A. Prékopa, "Stochastic Programming,", Kluwer, (1995).
|
[23] |
A. Ruszczyński and A. Shapiro, "Stochastic Programming,", Handbooks in Operations Research and Management Science, 10 (2003).
|
[24] |
R. Schultz, Continuity properties of expectation functions in stochastic integer programming,, Mathematics of Operations Research, 18 (1993), 578.
|
[25] |
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse,, Mathematical Programming, 70 (1995), 73.
|
[26] |
R. Schultz, Stochastic programming with integer variables,, Mathematical Programming, 97 (2003), 285.
|
[27] |
R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse,, SIAM Journal on Optimization, 14 (2003), 115.
|
[28] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", SIAM-MPS, (2009).
|
[29] |
J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis,", Springer, (1992).
|
[1] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[2] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[3] |
C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020058 |
[4] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[5] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[6] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[7] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[8] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[9] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[10] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[11] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[12] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[13] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[14] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[15] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[16] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[17] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[18] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[19] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[20] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]