
Previous Article
Analyzing the computational impact of MIQCP solver components
 NACO Home
 This Issue

Next Article
Towards globally optimal operation of water supply networks
Twostage stochastic programs: Integer variables, dominance relations and PDE constraints
1.  Department of Mathematics, University of DuisburgEssen, Campus Duisburg, Lotharstr. 65, D47048 Duisburg, Germany 
References:
[1] 
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Nonlinear Parametric Optimization," AkademieVerlag, Berlin, 1983. Google Scholar 
[2] 
B. Bank and R. Mandel, "Parametric Integer Optimization," AkademieVerlag, Berlin 1988. Google Scholar 
[3] 
A. BenTal, L. ElGhaoui and A. Nemirovski, "Robust Optimization," Princeton University Press, Princeton and Oxford, 2009. Google Scholar 
[4] 
J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming," SpringerVerlag, New York, 1997. Google Scholar 
[5] 
C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I, Discrete Mathematics, 19 (1977), 121138. Google Scholar 
[6] 
C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters, 24 (1999), 3745. Google Scholar 
[7] 
M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with secondorder stochastic dominance constraints, Computational Management Science, 6 (2009), 233250. Google Scholar 
[8] 
P. G. Ciarlet, "Mathematical Elasticity Volume I: ThreeDimensional Elasticity," Studies in Mathematics and its Applications, Vol. 20, NorthHolland, 1988. Google Scholar 
[9] 
, CPLEX Callable Library9.1.3, ILOG, 2008. Available from:, , (). Google Scholar 
[10] 
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty  a stochastic programming perspective, SIAM Journal on Optimization, 19 (2008), 16101632. Google Scholar 
[11] 
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization, SIAM Journal on Control and Optimization, 49 (2011), 927947. Google Scholar 
[12] 
M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization," SIAM, Philadelphia, 2001. Google Scholar 
[13] 
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548566. Google Scholar 
[14] 
D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329350. doi: 10.1007/s101070030453z. Google Scholar 
[15] 
R. Gollmer, U. Gotzes and R. Schultz, A note on secondorder stochastic dominance constraints induced by mixedinteger linear recourse, Mathematical Programming, 127 (2011), 179190. Google Scholar 
[16] 
R. Gollmer, F. Neise and R. Schultz, Stochastic programs with firstorder dominance constraints induced by mixedinteger linear recourse, SIAM Journal on Optimization, 19 (2008), 552571. Google Scholar 
[17] 
U. Gotzes and F. Neise, "User's Guide to ddsip.vSD  A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by MixedInteger Linear Recourse," Department of Mathematics, University of DuisburgEssen, 2008. Google Scholar 
[18] 
E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming, International Journal of Electrical Power & Energy Systems, 28 (2006), 618626. Google Scholar 
[19] 
A. Märkert and R. Gollmer, "User's Guide to ddsip  A C Package for the Dual Decomposition of TwoStage Stochastic Programs with MixedInteger Recourse," Department of Mathematics, University of DuisburgEssen, 2008; Available from: http://www.neosserver.org/neos/solvers/slp:ddsip/MPS.html. Google Scholar 
[20] 
A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks," Wiley, Chichester, 2002. Google Scholar 
[21] 
G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization," Wiley, New York 1988. Google Scholar 
[22] 
A. Prékopa, "Stochastic Programming," Kluwer, Dordrecht, 1995. Google Scholar 
[23] 
A. Ruszczyński and A. Shapiro, "Stochastic Programming," Handbooks in Operations Research and Management Science, Elsevier, Amsterdam, 10 (2003). Google Scholar 
[24] 
R. Schultz, Continuity properties of expectation functions in stochastic integer programming, Mathematics of Operations Research, 18 (1993), 578589. Google Scholar 
[25] 
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming, 70 (1995), 7389. Google Scholar 
[26] 
R. Schultz, Stochastic programming with integer variables, Mathematical Programming, 97 (2003), 285309. Google Scholar 
[27] 
R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with MixedInteger Recourse, SIAM Journal on Optimization, 14 (2003), 115138. Google Scholar 
[28] 
A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory," SIAMMPS, Philadelphia, 2009. Google Scholar 
[29] 
J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer, 1992. Google Scholar 
show all references
References:
[1] 
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Nonlinear Parametric Optimization," AkademieVerlag, Berlin, 1983. Google Scholar 
[2] 
B. Bank and R. Mandel, "Parametric Integer Optimization," AkademieVerlag, Berlin 1988. Google Scholar 
[3] 
A. BenTal, L. ElGhaoui and A. Nemirovski, "Robust Optimization," Princeton University Press, Princeton and Oxford, 2009. Google Scholar 
[4] 
J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming," SpringerVerlag, New York, 1997. Google Scholar 
[5] 
C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I, Discrete Mathematics, 19 (1977), 121138. Google Scholar 
[6] 
C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters, 24 (1999), 3745. Google Scholar 
[7] 
M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with secondorder stochastic dominance constraints, Computational Management Science, 6 (2009), 233250. Google Scholar 
[8] 
P. G. Ciarlet, "Mathematical Elasticity Volume I: ThreeDimensional Elasticity," Studies in Mathematics and its Applications, Vol. 20, NorthHolland, 1988. Google Scholar 
[9] 
, CPLEX Callable Library9.1.3, ILOG, 2008. Available from:, , (). Google Scholar 
[10] 
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty  a stochastic programming perspective, SIAM Journal on Optimization, 19 (2008), 16101632. Google Scholar 
[11] 
S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization, SIAM Journal on Control and Optimization, 49 (2011), 927947. Google Scholar 
[12] 
M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization," SIAM, Philadelphia, 2001. Google Scholar 
[13] 
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548566. Google Scholar 
[14] 
D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329350. doi: 10.1007/s101070030453z. Google Scholar 
[15] 
R. Gollmer, U. Gotzes and R. Schultz, A note on secondorder stochastic dominance constraints induced by mixedinteger linear recourse, Mathematical Programming, 127 (2011), 179190. Google Scholar 
[16] 
R. Gollmer, F. Neise and R. Schultz, Stochastic programs with firstorder dominance constraints induced by mixedinteger linear recourse, SIAM Journal on Optimization, 19 (2008), 552571. Google Scholar 
[17] 
U. Gotzes and F. Neise, "User's Guide to ddsip.vSD  A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by MixedInteger Linear Recourse," Department of Mathematics, University of DuisburgEssen, 2008. Google Scholar 
[18] 
E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming, International Journal of Electrical Power & Energy Systems, 28 (2006), 618626. Google Scholar 
[19] 
A. Märkert and R. Gollmer, "User's Guide to ddsip  A C Package for the Dual Decomposition of TwoStage Stochastic Programs with MixedInteger Recourse," Department of Mathematics, University of DuisburgEssen, 2008; Available from: http://www.neosserver.org/neos/solvers/slp:ddsip/MPS.html. Google Scholar 
[20] 
A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks," Wiley, Chichester, 2002. Google Scholar 
[21] 
G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization," Wiley, New York 1988. Google Scholar 
[22] 
A. Prékopa, "Stochastic Programming," Kluwer, Dordrecht, 1995. Google Scholar 
[23] 
A. Ruszczyński and A. Shapiro, "Stochastic Programming," Handbooks in Operations Research and Management Science, Elsevier, Amsterdam, 10 (2003). Google Scholar 
[24] 
R. Schultz, Continuity properties of expectation functions in stochastic integer programming, Mathematics of Operations Research, 18 (1993), 578589. Google Scholar 
[25] 
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming, 70 (1995), 7389. Google Scholar 
[26] 
R. Schultz, Stochastic programming with integer variables, Mathematical Programming, 97 (2003), 285309. Google Scholar 
[27] 
R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with MixedInteger Recourse, SIAM Journal on Optimization, 14 (2003), 115138. Google Scholar 
[28] 
A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory," SIAMMPS, Philadelphia, 2009. Google Scholar 
[29] 
J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer, 1992. Google Scholar 
[1] 
René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in twostage stochastic mixedinteger programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363384. doi: 10.3934/jimo.2008.4.363 
[2] 
Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Twostage meanrisk stochastic mixed integer optimization model for locationallocation problems under uncertain environment. Journal of Industrial & Management Optimization, 2021, 17 (5) : 27832804. doi: 10.3934/jimo.2020094 
[3] 
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixedinteger linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 16011623. doi: 10.3934/jimo.2017009 
[4] 
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117131. doi: 10.3934/jimo.2019102 
[5] 
Ardeshir Ahmadi, Hamed DavariArdakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359377. doi: 10.3934/naco.2017023 
[6] 
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353362. doi: 10.3934/jimo.2008.4.353 
[7] 
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 10271039. doi: 10.3934/jimo.2011.7.1027 
[8] 
Zhiguo Feng, KaFai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557566. doi: 10.3934/jimo.2014.10.557 
[9] 
Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2020, 16 (6) : 25812602. doi: 10.3934/jimo.2019071 
[10] 
Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115132. doi: 10.3934/naco.2014.4.115 
[11] 
Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probebased traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783802. doi: 10.3934/nhm.2013.8.783 
[12] 
Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial & Management Optimization, 2021, 17 (6) : 34753491. doi: 10.3934/jimo.2020128 
[13] 
Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial & Management Optimization, 2019, 15 (2) : 947962. doi: 10.3934/jimo.2018079 
[14] 
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving realtime trucktodoor assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431447. doi: 10.3934/jimo.2016.12.431 
[15] 
Zhenhuan Yang, Wei Shen, Yiming Ying, Xiaoming Yuan. Stochastic AUC optimization with general loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 41914212. doi: 10.3934/cpaa.2020188 
[16] 
Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multiobjective chanceconstrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021169 
[17] 
Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial & Management Optimization, 2020, 16 (6) : 26752701. doi: 10.3934/jimo.2019075 
[18] 
Zhenbo Wang, ShuCherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multiinteger quadratic programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 213225. doi: 10.3934/jimo.2008.4.213 
[19] 
Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 6778. doi: 10.3934/jimo.2011.7.67 
[20] 
Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301323. doi: 10.3934/naco.2017020 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]