2012, 2(4): 749-765. doi: 10.3934/naco.2012.2.749

Simulation of Lévy-Driven models and its application in finance

1. 

School of Management, Fudan University, Guoshun Road 670, Shanghai 200433, China, China, China

Received  May 2012 Revised  September 2012 Published  November 2012

Lévy processes have been widely used to model financial assets such as stock prices, exchange rates, interest rates, and commodities. However, when applied to derivative pricing, very few analytical results are available except for European options. Therefore, one usually has to resort to numerical methods such as Monte Carlo simulation method. The simulation method is attractive in that it is very general and can also handle high dimensional problems very well. In this survey paper, we provide an overview on various simulation methods for Lévy processes. In addition, we introduce two simulation based sensitivity estimation methods: perturbation analysis and the likelihood ratio method. Sensitivity estimation is useful in various applications, such as derivative pricing and parameter estimation. Finally, we provide a simple illustrative example of applying simulation and sensitivity estimation to parameter estimation of Lévy-driven stochastic volatility model.
Citation: Rachel Chen, Jianqiang Hu, Yijie Peng. Simulation of Lévy-Driven models and its application in finance. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 749-765. doi: 10.3934/naco.2012.2.749
References:
[1]

O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics,, Journal Of The Royal Statistical Society, 63 (2001), 167. Google Scholar

[2]

J. Bertoin, "Lévy Processes,", 2nd edition, (1996). Google Scholar

[3]

P. Carr and L. Wu, Time-changed Lévy processes and option pricing,, Journal of Financial Economics, 71 (2004), 113. doi: 10.1016/S0304-405X(03)00171-5. Google Scholar

[4]

Z. Chen, L. Feng and X. Lin, Simulating Lévy processes from their characteristic functions and financial applications,, ACM Transactions on Modeling and Computer Simulation, 22 (2012). Google Scholar

[5]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC, (2004). Google Scholar

[6]

P. Glasserman, "Gradient Estimation via Perturbation Analysis,", Kluwer Academic, (1991). Google Scholar

[7]

P. Glasserman, "Monte Carlo Methods in Financial Engineering,", Springer, (2004). Google Scholar

[8]

P. Glasserman and Z. Liu, Estimating Greeks in simulating Lévy-driven models,, Journal of Computational Finance, 14 (2010), 3. Google Scholar

[9]

M. C. Fu and J. Q. Hu, "Conditional Monte Carlo: Gradient Estimation and Optimization Applications,", Kluwer Academic, (1997). Google Scholar

[10]

M. C. Fu, Variance-Gamma and Monte Carlo,, Advances in Mathematical Finance, (2007), 21. Google Scholar

[11]

P. W. Glynn, Likelihood ratio gradient estimation: An overview,, Proceedings of the 1987 Winter Simulation Conference, (1987), 366. Google Scholar

[12]

Y. C. Ho and X. R. Cao, "Perturbation Analysis of Discrete Event Dynamic Systems,", Kluwer Academic, (1991). doi: 10.1007/978-1-4615-4024-3. Google Scholar

[13]

B. Mondelbrot, "The variation of certain speculative prices,", The Journal of Business, 36 (1963), 394. doi: 10.1086/294632. Google Scholar

[14]

Y. J. Peng, M. C. Fu and J. Q. Hu, Gradient-based simulated maximum likelihood estimation for Lévy-Driven Ornstein-Uhlenbeck stochastic volatility models,, Working Paper, (2012). Google Scholar

[15]

K. I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Cambridge University Press, (1999). Google Scholar

[16]

W. Schoutens, "Lévy Processes in Finance: Pricing Financial Derivatives,", Wiley, (2003). Google Scholar

show all references

References:
[1]

O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics,, Journal Of The Royal Statistical Society, 63 (2001), 167. Google Scholar

[2]

J. Bertoin, "Lévy Processes,", 2nd edition, (1996). Google Scholar

[3]

P. Carr and L. Wu, Time-changed Lévy processes and option pricing,, Journal of Financial Economics, 71 (2004), 113. doi: 10.1016/S0304-405X(03)00171-5. Google Scholar

[4]

Z. Chen, L. Feng and X. Lin, Simulating Lévy processes from their characteristic functions and financial applications,, ACM Transactions on Modeling and Computer Simulation, 22 (2012). Google Scholar

[5]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC, (2004). Google Scholar

[6]

P. Glasserman, "Gradient Estimation via Perturbation Analysis,", Kluwer Academic, (1991). Google Scholar

[7]

P. Glasserman, "Monte Carlo Methods in Financial Engineering,", Springer, (2004). Google Scholar

[8]

P. Glasserman and Z. Liu, Estimating Greeks in simulating Lévy-driven models,, Journal of Computational Finance, 14 (2010), 3. Google Scholar

[9]

M. C. Fu and J. Q. Hu, "Conditional Monte Carlo: Gradient Estimation and Optimization Applications,", Kluwer Academic, (1997). Google Scholar

[10]

M. C. Fu, Variance-Gamma and Monte Carlo,, Advances in Mathematical Finance, (2007), 21. Google Scholar

[11]

P. W. Glynn, Likelihood ratio gradient estimation: An overview,, Proceedings of the 1987 Winter Simulation Conference, (1987), 366. Google Scholar

[12]

Y. C. Ho and X. R. Cao, "Perturbation Analysis of Discrete Event Dynamic Systems,", Kluwer Academic, (1991). doi: 10.1007/978-1-4615-4024-3. Google Scholar

[13]

B. Mondelbrot, "The variation of certain speculative prices,", The Journal of Business, 36 (1963), 394. doi: 10.1086/294632. Google Scholar

[14]

Y. J. Peng, M. C. Fu and J. Q. Hu, Gradient-based simulated maximum likelihood estimation for Lévy-Driven Ornstein-Uhlenbeck stochastic volatility models,, Working Paper, (2012). Google Scholar

[15]

K. I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Cambridge University Press, (1999). Google Scholar

[16]

W. Schoutens, "Lévy Processes in Finance: Pricing Financial Derivatives,", Wiley, (2003). Google Scholar

[1]

Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems & Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11

[2]

Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems & Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167

[3]

Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209

[4]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[5]

Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105

[6]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[7]

Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

[8]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[9]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[10]

H.T. Banks, Jimena L. Davis. Quantifying uncertainty in the estimation of probability distributions. Mathematical Biosciences & Engineering, 2008, 5 (4) : 647-667. doi: 10.3934/mbe.2008.5.647

[11]

Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601

[12]

Xue Lu, Niall Adams, Nikolas Kantas. On adaptive estimation for dynamic Bernoulli bandits. Foundations of Data Science, 2019, 1 (2) : 197-225. doi: 10.3934/fods.2019009

[13]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[14]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[15]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

[16]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[17]

Pei Yean Lee, John B Moore. Gauss-Newton-on-manifold for pose estimation. Journal of Industrial & Management Optimization, 2005, 1 (4) : 565-587. doi: 10.3934/jimo.2005.1.565

[18]

Bertram Düring, Ansgar Jüngel, Lara Trussardi. A kinetic equation for economic value estimation with irrationality and herding. Kinetic & Related Models, 2017, 10 (1) : 239-261. doi: 10.3934/krm.2017010

[19]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[20]

Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]