-
Previous Article
A note on semicontinuity to a parametric generalized Ky Fan inequality
- NACO Home
- This Issue
-
Next Article
Simulation of Lévy-Driven models and its application in finance
A survey on probabilistically constrained optimization problems
1. | School of Management, Fudan University, Shanghai 200433, China |
2. | School of Economics and Management, Tongji University, Shanghai 200092, China |
References:
[1] |
G. J. Alexander and A. M. Baptista, A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model,, Management Science, 50 (2004), 1261.
doi: 10.1287/mnsc.1040.0201. |
[2] |
G. J. Alexander, A. M. Baptista and S. Yan, Mean-variance portfolio selection with 'at-risk' constraints and discrete distributions,, Journal of Banking & Finance, 31 (2007), 3761.
doi: 10.1016/j.jbankfin.2007.01.019. |
[3] |
X. D. Bai, J. Sun, X. J. Zheng and X. L. Sun, A penalty decomposition method for probabilistically constrained convex programs,, Technical report, (2012). Google Scholar |
[4] |
A. Ben-Tal, L. El Ghaoui and A. S. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).
|
[5] |
S. Benati and R. Rizzi, A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem,, European Journal of Operational Research, 176 (2007), 423.
doi: 10.1016/j.ejor.2005.07.020. |
[6] |
P. Beraldi and A. Ruszczyński, The probabilistic set-covering problem,, Operations Research, 50 (2002), 956.
doi: 10.1287/opre.50.6.956.345. |
[7] |
P. Bonami and M. A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints,, Operations Research, 57 (2009), 650.
doi: 10.1287/opre.1080.0599. |
[8] |
S. P. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).
|
[9] |
G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Transactions on Automatic Control, 51 (2006), 742.
doi: 10.1109/TAC.2006.875041. |
[10] |
A. Charnes and W. W. Cooper, Chance-constrained programming,, Management Science, 6 (1959), 73.
doi: 10.1287/mnsc.6.1.73. |
[11] |
W. Chen, M. Sim, J. Sun and C. P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization,, Operations Research, 58 (2010), 470.
doi: [10.1287/opre.1090.0712. |
[12] |
M. S. Cheon, S. Ahmed and F. Al-Khayyal, A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs,, Mathematical Programming, 108 (2006), 617.
doi: 10.1007/s10107-006-0725-5. |
[13] |
D. Dentcheva and G. Martinez, Augmented Lagrangian method for probabilistic optimization,, Annals of Operations Research, 200 (2012), 109.
doi: 10.1007/s10479-011-0884-5. |
[14] |
D. Dentcheva, A. Prékopa and A. Ruszczynski, Concavity and efficient points of discrete distributions in probabilistic programming,, Mathematical Programming, 89 (2000), 55.
doi: 10.1007/PL00011393. |
[15] |
A. A. Gaivoronski and G. Pflug, Value at risk in portfolio optimization: Properties and computational approach,, Journal of Risk, 7 (2005), 1. Google Scholar |
[16] |
R. Henrion, Structural properties of linear probabilistic constraints,, Optimization, 56 (2007), 425.
doi: 10.1080/02331930701421046. |
[17] |
R. Henrion and C. Strugarek, Convexity of chance constraints with independent random variables,, Computational Optimization and Applications, 41 (2008), 263.
doi: 10.1007/s10589-007-9105-1. |
[18] |
L. J. Hong, Y. Yang, and L. Zhang, Sequential convex approximations to joint chance constrained programs: A monte carlo approach,, Operations Research, 59 (2011), 617.
doi: 10.1287/opre.1100.0910. |
[19] |
S. Küçükyavuz, On mixing sets arising in chance-constrained programming,, Mathematical Programming, 132 (2012), 31.
doi: 10.1007/s10107-010-0385-3. |
[20] |
C. M. Lagoa, X. Li, and M. Sznaier, Probabilistically constrained linear programs and risk-adjusted controller design,, SIAM Journal on Optimization, 15 (2005), 938.
doi: 10.1137/S1052623403430099. |
[21] |
M. Lejeune and N. Noyan, Mathematical programming approaches for generating p-efficient points,, European Journal of Operational Research, 207 (2010), 590.
doi: 10.1016/j.ejor.2010.05.025. |
[22] |
M. A. Lejeune and A. Ruszczynski, An efficient trajectory method for probabilistic inventory production-distribution problems,, Operations Research, 55 (2007), 378.
doi: 10.1287/opre.1060.0356. |
[23] |
J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.
doi: 10.1137/070702928. |
[24] |
J. Luedtke, S. Ahmed and G. L. Nemhauser, An integer programming approach for linear programs with probabilistic constraints,, Mathematical Programming, 122 (2010), 247.
doi: 10.1007/s10107-008-0247-4. |
[25] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.
doi: 10.1137/050622328. |
[26] |
A. Nemirovski and A. Shapiro, Scenario approximations of chance constraints,, in, (2006), 3.
doi: 10.1007/1-84628-095-8_1. |
[27] |
J. Nocedal and S. J. Wright, "Numerical Optimization,", Springer, (1999).
doi: 10.1007/b98874. |
[28] |
A. Prékopa, Probabilistic programming,, in, (2003), 267.
|
[29] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. Google Scholar |
[30] |
A. Ruszczyński, Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra,, Mathematical Programming, 93 (2002), 195.
doi: 10.1007/s10107-002-0337-7. |
[31] |
A. Saxena, V. Goyal and M. A. Lejeune, MIP reformulations of the probabilistic set covering problem,, Mathematical Programming, 121 (2010), 1.
doi: 10.1007/s10107-008-0224-y. |
[32] |
X. J. Zheng, X. L. Sun, D. Li and X. T. Cui, Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs,, European Journal of Operational Research, 221 (2012), 38.
doi: 10.1016/j.ejor.2012.03.006. |
show all references
References:
[1] |
G. J. Alexander and A. M. Baptista, A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model,, Management Science, 50 (2004), 1261.
doi: 10.1287/mnsc.1040.0201. |
[2] |
G. J. Alexander, A. M. Baptista and S. Yan, Mean-variance portfolio selection with 'at-risk' constraints and discrete distributions,, Journal of Banking & Finance, 31 (2007), 3761.
doi: 10.1016/j.jbankfin.2007.01.019. |
[3] |
X. D. Bai, J. Sun, X. J. Zheng and X. L. Sun, A penalty decomposition method for probabilistically constrained convex programs,, Technical report, (2012). Google Scholar |
[4] |
A. Ben-Tal, L. El Ghaoui and A. S. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).
|
[5] |
S. Benati and R. Rizzi, A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem,, European Journal of Operational Research, 176 (2007), 423.
doi: 10.1016/j.ejor.2005.07.020. |
[6] |
P. Beraldi and A. Ruszczyński, The probabilistic set-covering problem,, Operations Research, 50 (2002), 956.
doi: 10.1287/opre.50.6.956.345. |
[7] |
P. Bonami and M. A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints,, Operations Research, 57 (2009), 650.
doi: 10.1287/opre.1080.0599. |
[8] |
S. P. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).
|
[9] |
G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Transactions on Automatic Control, 51 (2006), 742.
doi: 10.1109/TAC.2006.875041. |
[10] |
A. Charnes and W. W. Cooper, Chance-constrained programming,, Management Science, 6 (1959), 73.
doi: 10.1287/mnsc.6.1.73. |
[11] |
W. Chen, M. Sim, J. Sun and C. P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization,, Operations Research, 58 (2010), 470.
doi: [10.1287/opre.1090.0712. |
[12] |
M. S. Cheon, S. Ahmed and F. Al-Khayyal, A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs,, Mathematical Programming, 108 (2006), 617.
doi: 10.1007/s10107-006-0725-5. |
[13] |
D. Dentcheva and G. Martinez, Augmented Lagrangian method for probabilistic optimization,, Annals of Operations Research, 200 (2012), 109.
doi: 10.1007/s10479-011-0884-5. |
[14] |
D. Dentcheva, A. Prékopa and A. Ruszczynski, Concavity and efficient points of discrete distributions in probabilistic programming,, Mathematical Programming, 89 (2000), 55.
doi: 10.1007/PL00011393. |
[15] |
A. A. Gaivoronski and G. Pflug, Value at risk in portfolio optimization: Properties and computational approach,, Journal of Risk, 7 (2005), 1. Google Scholar |
[16] |
R. Henrion, Structural properties of linear probabilistic constraints,, Optimization, 56 (2007), 425.
doi: 10.1080/02331930701421046. |
[17] |
R. Henrion and C. Strugarek, Convexity of chance constraints with independent random variables,, Computational Optimization and Applications, 41 (2008), 263.
doi: 10.1007/s10589-007-9105-1. |
[18] |
L. J. Hong, Y. Yang, and L. Zhang, Sequential convex approximations to joint chance constrained programs: A monte carlo approach,, Operations Research, 59 (2011), 617.
doi: 10.1287/opre.1100.0910. |
[19] |
S. Küçükyavuz, On mixing sets arising in chance-constrained programming,, Mathematical Programming, 132 (2012), 31.
doi: 10.1007/s10107-010-0385-3. |
[20] |
C. M. Lagoa, X. Li, and M. Sznaier, Probabilistically constrained linear programs and risk-adjusted controller design,, SIAM Journal on Optimization, 15 (2005), 938.
doi: 10.1137/S1052623403430099. |
[21] |
M. Lejeune and N. Noyan, Mathematical programming approaches for generating p-efficient points,, European Journal of Operational Research, 207 (2010), 590.
doi: 10.1016/j.ejor.2010.05.025. |
[22] |
M. A. Lejeune and A. Ruszczynski, An efficient trajectory method for probabilistic inventory production-distribution problems,, Operations Research, 55 (2007), 378.
doi: 10.1287/opre.1060.0356. |
[23] |
J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.
doi: 10.1137/070702928. |
[24] |
J. Luedtke, S. Ahmed and G. L. Nemhauser, An integer programming approach for linear programs with probabilistic constraints,, Mathematical Programming, 122 (2010), 247.
doi: 10.1007/s10107-008-0247-4. |
[25] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.
doi: 10.1137/050622328. |
[26] |
A. Nemirovski and A. Shapiro, Scenario approximations of chance constraints,, in, (2006), 3.
doi: 10.1007/1-84628-095-8_1. |
[27] |
J. Nocedal and S. J. Wright, "Numerical Optimization,", Springer, (1999).
doi: 10.1007/b98874. |
[28] |
A. Prékopa, Probabilistic programming,, in, (2003), 267.
|
[29] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. Google Scholar |
[30] |
A. Ruszczyński, Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra,, Mathematical Programming, 93 (2002), 195.
doi: 10.1007/s10107-002-0337-7. |
[31] |
A. Saxena, V. Goyal and M. A. Lejeune, MIP reformulations of the probabilistic set covering problem,, Mathematical Programming, 121 (2010), 1.
doi: 10.1007/s10107-008-0224-y. |
[32] |
X. J. Zheng, X. L. Sun, D. Li and X. T. Cui, Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs,, European Journal of Operational Research, 221 (2012), 38.
doi: 10.1016/j.ejor.2012.03.006. |
[1] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[2] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[3] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[4] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[5] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[6] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[7] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[8] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[9] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[10] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[11] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[12] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[13] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[14] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[15] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[16] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[17] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[18] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[19] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[20] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]