2012, 2(4): 779-784. doi: 10.3934/naco.2012.2.779

A note on semicontinuity to a parametric generalized Ky Fan inequality

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

2. 

Chongqing Police College, Chongqing 401331, China

Received  September 2011 Revised  May 2012 Published  November 2012

In this note, the continuity results of weak vector solutions and global vector solutions to a parametric generalized Ky Fan inequality are established by using a new scalarization method. Our results improve the corresponding ones of Li and Fang (J. Optim. Theory Appl. 147: 507-515, 2010).
Citation: Chunrong Chen, Zhimiao Fang. A note on semicontinuity to a parametric generalized Ky Fan inequality. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 779-784. doi: 10.3934/naco.2012.2.779
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Wiley, (1984).   Google Scholar

[4]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[5]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Global Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[6]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[7]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalized vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Global Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extensions of two fixed point theorems of F.E.Browder,, Math Z., 112 (1969), 234.  doi: 10.1007/BF01110225.  Google Scholar

[10]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of the efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[11]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[12]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[14]

P. Q. Khanh and L. M. Luu, Upper semicontinuity of the solution set to parametric vector quasivariational inequalities,, J. Global Optim., 32 (2005), 569.  doi: 10.1007/s10898-004-2694-7.  Google Scholar

[15]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Global Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[16]

K. Kimura and J. C. Yao, Semicontinuity of solutionmappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[17]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[18]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[19]

M. M. Wong, Lower semicontinuity of the solution map to a parametric vector variational inequality,, J. Global Optim., 46 (2010), 435.  doi: 10.1007/s10898-009-9447-6.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Wiley, (1984).   Google Scholar

[4]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[5]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Global Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[6]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[7]

C. R. Chen, S. J. Li and Z. M. Fang, On the solution semicontinuity to a parametric generalized vector quasivariational inequality,, Comput. Math. Appl., 60 (2010), 2417.  doi: 10.1016/j.camwa.2010.08.036.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Global Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extensions of two fixed point theorems of F.E.Browder,, Math Z., 112 (1969), 234.  doi: 10.1007/BF01110225.  Google Scholar

[10]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of the efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[11]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[12]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[14]

P. Q. Khanh and L. M. Luu, Upper semicontinuity of the solution set to parametric vector quasivariational inequalities,, J. Global Optim., 32 (2005), 569.  doi: 10.1007/s10898-004-2694-7.  Google Scholar

[15]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Global Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[16]

K. Kimura and J. C. Yao, Semicontinuity of solutionmappings of parametric generalized vector equilibrium problems,, J. Optim. Theory Appl., 138 (2008), 429.  doi: 10.1007/s10957-008-9386-2.  Google Scholar

[17]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[18]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[19]

M. M. Wong, Lower semicontinuity of the solution map to a parametric vector variational inequality,, J. Global Optim., 46 (2010), 435.  doi: 10.1007/s10898-009-9447-6.  Google Scholar

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[6]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[7]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[8]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[9]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[10]

Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[16]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

 Impact Factor: 

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]