2012, 2(4): 785-796. doi: 10.3934/naco.2012.2.785

A multigrid method for the maximal correlation problem

1. 

School of Mathematical Science, Ocean University of China, Qiaodao 266100, China, China

Received  December 2011 Revised  September 2012 Published  November 2012

In this note, the continuity results of weak vector solutions and global vector solutions to a parametric generalized Ky Fan inequality are established by using a new scalarization method. Our results improve the corresponding ones of Li and Fang (J. Optim. Theory Appl. 147: 507-515, 2010).
Citation: Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785
References:
[1]

M. T. Chu and J. L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method,, SIAM J. Sci. Comput., 14 (1993), 1089.  doi: 10.1137/0914066.  Google Scholar

[2]

M. Y. Fu, Z. Q. Luo and Y. Y. Ye, Approximation algorithms for quadratic programming,, J. Comb. Optim., 2 (1998), 29.  doi: 10.1023/A:1009739827008.  Google Scholar

[3]

G. H. Golub and C. F. Van Loan, "Matrix Computations,", Third Edition, (1996).   Google Scholar

[4]

S. M. Grzegórski, On the convergence of the method of alternating projections for multivariate symmetric eigenvalue problem,, Numan 2010, (2010), 15.   Google Scholar

[5]

W. Hackbusch, "Multi-grid Method and Applications,", Springer-Verlag, (1985).   Google Scholar

[6]

M. Hanafi and J. M. F. Ten Berge, Global optimality of the successive Maxbet algorithm,, Psychometrika, 68 (2003), 97.  doi: 10.1007/BF02296655.  Google Scholar

[7]

P. Horst, Relations among m sets of measures,, Psychometrika, 26 (1961), 129.  doi: 10.1007/BF02289710.  Google Scholar

[8]

D.-K. Hu, The convergence property of a algorithm about generalized eigenvalue and eigenvector of positive definite matrix,, China-Japan Symposium on Statistics, (1984).   Google Scholar

[9]

J. R. Kettenring, Canonical analysis of several sets of variables,, Biometrika, 58 (1971), 433.  doi: 10.1093/biomet/58.3.433.  Google Scholar

[10]

Z.-Y. Liu, J. Qian and S.-F. Xu, On the double eigenvalue problem,, preprint. Available online: , ().   Google Scholar

[11]

J.-G. Sun, An algorithm for the solution of multiparameter eigenvalue problem,, Math. Numer. Sinica(Chinese), 8 (1986), 137.   Google Scholar

[12]

J. M. F. Ten Berge, Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations,, Psychometrika, 53 (1988), 487.  doi: 10.1007/BF02294402.  Google Scholar

[13]

T. L. Van Noorden and J. Barkmeijer, The multivariate eigenvalue problem: A new application, theory and a subspace accelerated power method,, Universiteit Utrecht, (2008).   Google Scholar

[14]

L.-H. Xu, "Numerical Methods for the Multivariate Eigenvalue Problem,", M.S. Thesis, (2008), 10423.   Google Scholar

[15]

S.-F. Xu, "Matrix Computations: Theory and Methods,", Peking University Press, (1995).   Google Scholar

[16]

Y. Y. Ye, Approximating quadratic programming with bound and quadratic constraints,, Math. Program., 84 (1999), 219.  doi: 10.1007/s10107980012a.  Google Scholar

[17]

L.-H. Zhang and M. T. Chu, Computing absolute maximum correlation,, IMA J. Numer. Anal., 32 (2012), 163.  doi: 10.1093/imanum/drq029.  Google Scholar

[18]

L.-H. Zhang and L.-Z. Liao, An alternating variable method for the maximal correlation problem,, J. Global Optim., 54 (2012), 199.  doi: 10.1007/s10898-011-9758-2.  Google Scholar

[19]

L.-H. Zhang, L.-Z. Liao and L.-M. Sun, Towards the global solution of the maximal correlation problem,, J. Global Optim., 49 (2011), 91.  doi: 10.1007/s10898-010-9536-6.  Google Scholar

[20]

L. Zhang, Y. Xu and Z. Jin, An efficient algorithm for convex quadratic semi-definite optimization,, Numer. Algebra Control Optim., 2 (2012), 129.  doi: 10.3934/naco.2012.2.129.  Google Scholar

show all references

References:
[1]

M. T. Chu and J. L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method,, SIAM J. Sci. Comput., 14 (1993), 1089.  doi: 10.1137/0914066.  Google Scholar

[2]

M. Y. Fu, Z. Q. Luo and Y. Y. Ye, Approximation algorithms for quadratic programming,, J. Comb. Optim., 2 (1998), 29.  doi: 10.1023/A:1009739827008.  Google Scholar

[3]

G. H. Golub and C. F. Van Loan, "Matrix Computations,", Third Edition, (1996).   Google Scholar

[4]

S. M. Grzegórski, On the convergence of the method of alternating projections for multivariate symmetric eigenvalue problem,, Numan 2010, (2010), 15.   Google Scholar

[5]

W. Hackbusch, "Multi-grid Method and Applications,", Springer-Verlag, (1985).   Google Scholar

[6]

M. Hanafi and J. M. F. Ten Berge, Global optimality of the successive Maxbet algorithm,, Psychometrika, 68 (2003), 97.  doi: 10.1007/BF02296655.  Google Scholar

[7]

P. Horst, Relations among m sets of measures,, Psychometrika, 26 (1961), 129.  doi: 10.1007/BF02289710.  Google Scholar

[8]

D.-K. Hu, The convergence property of a algorithm about generalized eigenvalue and eigenvector of positive definite matrix,, China-Japan Symposium on Statistics, (1984).   Google Scholar

[9]

J. R. Kettenring, Canonical analysis of several sets of variables,, Biometrika, 58 (1971), 433.  doi: 10.1093/biomet/58.3.433.  Google Scholar

[10]

Z.-Y. Liu, J. Qian and S.-F. Xu, On the double eigenvalue problem,, preprint. Available online: , ().   Google Scholar

[11]

J.-G. Sun, An algorithm for the solution of multiparameter eigenvalue problem,, Math. Numer. Sinica(Chinese), 8 (1986), 137.   Google Scholar

[12]

J. M. F. Ten Berge, Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations,, Psychometrika, 53 (1988), 487.  doi: 10.1007/BF02294402.  Google Scholar

[13]

T. L. Van Noorden and J. Barkmeijer, The multivariate eigenvalue problem: A new application, theory and a subspace accelerated power method,, Universiteit Utrecht, (2008).   Google Scholar

[14]

L.-H. Xu, "Numerical Methods for the Multivariate Eigenvalue Problem,", M.S. Thesis, (2008), 10423.   Google Scholar

[15]

S.-F. Xu, "Matrix Computations: Theory and Methods,", Peking University Press, (1995).   Google Scholar

[16]

Y. Y. Ye, Approximating quadratic programming with bound and quadratic constraints,, Math. Program., 84 (1999), 219.  doi: 10.1007/s10107980012a.  Google Scholar

[17]

L.-H. Zhang and M. T. Chu, Computing absolute maximum correlation,, IMA J. Numer. Anal., 32 (2012), 163.  doi: 10.1093/imanum/drq029.  Google Scholar

[18]

L.-H. Zhang and L.-Z. Liao, An alternating variable method for the maximal correlation problem,, J. Global Optim., 54 (2012), 199.  doi: 10.1007/s10898-011-9758-2.  Google Scholar

[19]

L.-H. Zhang, L.-Z. Liao and L.-M. Sun, Towards the global solution of the maximal correlation problem,, J. Global Optim., 49 (2011), 91.  doi: 10.1007/s10898-010-9536-6.  Google Scholar

[20]

L. Zhang, Y. Xu and Z. Jin, An efficient algorithm for convex quadratic semi-definite optimization,, Numer. Algebra Control Optim., 2 (2012), 129.  doi: 10.3934/naco.2012.2.129.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]