-
Previous Article
On product-type generalized block AOR method for augmented linear systems
- NACO Home
- This Issue
-
Next Article
A note on semicontinuity to a parametric generalized Ky Fan inequality
A multigrid method for the maximal correlation problem
1. | School of Mathematical Science, Ocean University of China, Qiaodao 266100, China, China |
References:
[1] |
M. T. Chu and J. L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method, SIAM J. Sci. Comput., 14 (1993), 1089-1106.
doi: 10.1137/0914066. |
[2] |
M. Y. Fu, Z. Q. Luo and Y. Y. Ye, Approximation algorithms for quadratic programming, J. Comb. Optim., 2 (1998), 29-50.
doi: 10.1023/A:1009739827008. |
[3] |
G. H. Golub and C. F. Van Loan, "Matrix Computations," Third Edition, The Johns Hopkins University Press, Baltimore, 1996. |
[4] |
S. M. Grzegórski, On the convergence of the method of alternating projections for multivariate symmetric eigenvalue problem, Numan 2010, Conference in Numerical Analysis, Chania, Greece, Sept 15-18, 2010. |
[5] |
W. Hackbusch, "Multi-grid Method and Applications," Springer-Verlag, New York, 1985. |
[6] |
M. Hanafi and J. M. F. Ten Berge, Global optimality of the successive Maxbet algorithm, Psychometrika, 68 (2003), 97-103.
doi: 10.1007/BF02296655. |
[7] |
P. Horst, Relations among m sets of measures, Psychometrika, 26 (1961), 129-149.
doi: 10.1007/BF02289710. |
[8] |
D.-K. Hu, The convergence property of a algorithm about generalized eigenvalue and eigenvector of positive definite matrix, China-Japan Symposium on Statistics, 1984, Beijing, China. |
[9] |
J. R. Kettenring, Canonical analysis of several sets of variables, Biometrika, 58 (1971), 433-451.
doi: 10.1093/biomet/58.3.433. |
[10] |
Z.-Y. Liu, J. Qian and S.-F. Xu, On the double eigenvalue problem, preprint. Available online: http://www.math.pku.edu.cn:8000/var/preprint/7229.pdf. |
[11] |
J.-G. Sun, An algorithm for the solution of multiparameter eigenvalue problem, Math. Numer. Sinica(Chinese), 8 (1986), 137-149. |
[12] |
J. M. F. Ten Berge, Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations, Psychometrika, 53 (1988), 487-494.
doi: 10.1007/BF02294402. |
[13] |
T. L. Van Noorden and J. Barkmeijer, The multivariate eigenvalue problem: A new application, theory and a subspace accelerated power method, Universiteit Utrecht, preprint, 2008. Available online: http://www.math.uu.nl/publications/preprints/1308.ps |
[14] |
L.-H. Xu, "Numerical Methods for the Multivariate Eigenvalue Problem," M.S. Thesis, Department of Mathematics, Ocean University of China, 2008, ( in Chinese). Available from: http://cdmd.cnki.com.cn/Article/CDMD-10423-2008175406.htm |
[15] |
S.-F. Xu, "Matrix Computations: Theory and Methods," Peking University Press, Bejing, 1995 (Chinese). |
[16] |
Y. Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math. Program., 84 (1999), 219-226.
doi: 10.1007/s10107980012a. |
[17] |
L.-H. Zhang and M. T. Chu, Computing absolute maximum correlation, IMA J. Numer. Anal., 32 (2012), 163-184.
doi: 10.1093/imanum/drq029. |
[18] |
L.-H. Zhang and L.-Z. Liao, An alternating variable method for the maximal correlation problem, J. Global Optim., 54 (2012), 199-218.
doi: 10.1007/s10898-011-9758-2. |
[19] |
L.-H. Zhang, L.-Z. Liao and L.-M. Sun, Towards the global solution of the maximal correlation problem, J. Global Optim., 49 (2011), 91-107.
doi: 10.1007/s10898-010-9536-6. |
[20] |
L. Zhang, Y. Xu and Z. Jin, An efficient algorithm for convex quadratic semi-definite optimization, Numer. Algebra Control Optim., 2 (2012), 129-144.
doi: 10.3934/naco.2012.2.129. |
show all references
References:
[1] |
M. T. Chu and J. L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method, SIAM J. Sci. Comput., 14 (1993), 1089-1106.
doi: 10.1137/0914066. |
[2] |
M. Y. Fu, Z. Q. Luo and Y. Y. Ye, Approximation algorithms for quadratic programming, J. Comb. Optim., 2 (1998), 29-50.
doi: 10.1023/A:1009739827008. |
[3] |
G. H. Golub and C. F. Van Loan, "Matrix Computations," Third Edition, The Johns Hopkins University Press, Baltimore, 1996. |
[4] |
S. M. Grzegórski, On the convergence of the method of alternating projections for multivariate symmetric eigenvalue problem, Numan 2010, Conference in Numerical Analysis, Chania, Greece, Sept 15-18, 2010. |
[5] |
W. Hackbusch, "Multi-grid Method and Applications," Springer-Verlag, New York, 1985. |
[6] |
M. Hanafi and J. M. F. Ten Berge, Global optimality of the successive Maxbet algorithm, Psychometrika, 68 (2003), 97-103.
doi: 10.1007/BF02296655. |
[7] |
P. Horst, Relations among m sets of measures, Psychometrika, 26 (1961), 129-149.
doi: 10.1007/BF02289710. |
[8] |
D.-K. Hu, The convergence property of a algorithm about generalized eigenvalue and eigenvector of positive definite matrix, China-Japan Symposium on Statistics, 1984, Beijing, China. |
[9] |
J. R. Kettenring, Canonical analysis of several sets of variables, Biometrika, 58 (1971), 433-451.
doi: 10.1093/biomet/58.3.433. |
[10] |
Z.-Y. Liu, J. Qian and S.-F. Xu, On the double eigenvalue problem, preprint. Available online: http://www.math.pku.edu.cn:8000/var/preprint/7229.pdf. |
[11] |
J.-G. Sun, An algorithm for the solution of multiparameter eigenvalue problem, Math. Numer. Sinica(Chinese), 8 (1986), 137-149. |
[12] |
J. M. F. Ten Berge, Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations, Psychometrika, 53 (1988), 487-494.
doi: 10.1007/BF02294402. |
[13] |
T. L. Van Noorden and J. Barkmeijer, The multivariate eigenvalue problem: A new application, theory and a subspace accelerated power method, Universiteit Utrecht, preprint, 2008. Available online: http://www.math.uu.nl/publications/preprints/1308.ps |
[14] |
L.-H. Xu, "Numerical Methods for the Multivariate Eigenvalue Problem," M.S. Thesis, Department of Mathematics, Ocean University of China, 2008, ( in Chinese). Available from: http://cdmd.cnki.com.cn/Article/CDMD-10423-2008175406.htm |
[15] |
S.-F. Xu, "Matrix Computations: Theory and Methods," Peking University Press, Bejing, 1995 (Chinese). |
[16] |
Y. Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math. Program., 84 (1999), 219-226.
doi: 10.1007/s10107980012a. |
[17] |
L.-H. Zhang and M. T. Chu, Computing absolute maximum correlation, IMA J. Numer. Anal., 32 (2012), 163-184.
doi: 10.1093/imanum/drq029. |
[18] |
L.-H. Zhang and L.-Z. Liao, An alternating variable method for the maximal correlation problem, J. Global Optim., 54 (2012), 199-218.
doi: 10.1007/s10898-011-9758-2. |
[19] |
L.-H. Zhang, L.-Z. Liao and L.-M. Sun, Towards the global solution of the maximal correlation problem, J. Global Optim., 49 (2011), 91-107.
doi: 10.1007/s10898-010-9536-6. |
[20] |
L. Zhang, Y. Xu and Z. Jin, An efficient algorithm for convex quadratic semi-definite optimization, Numer. Algebra Control Optim., 2 (2012), 129-144.
doi: 10.3934/naco.2012.2.129. |
[1] |
Panchi Li, Zetao Ma, Rui Du, Jingrun Chen. A Gauss-Seidel projection method with the minimal number of updates for the stray field in micromagnetics simulations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022002 |
[2] |
Xin Yang, Nan Wang, Lingling Xu. A parallel Gauss-Seidel method for convex problems with separable structure. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 557-570. doi: 10.3934/naco.2020051 |
[3] |
Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117 |
[4] |
Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial and Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189 |
[5] |
Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017 |
[6] |
Gusein Sh. Guseinov. Spectral method for deriving multivariate Poisson summation formulae. Communications on Pure and Applied Analysis, 2013, 12 (1) : 359-373. doi: 10.3934/cpaa.2013.12.359 |
[7] |
Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008 |
[8] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[9] |
Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1783-1799. doi: 10.3934/jimo.2019029 |
[10] |
Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91 |
[11] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[12] |
Jia Cai, Junyi Huo. Sparse generalized canonical correlation analysis via linearized Bregman method. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3933-3945. doi: 10.3934/cpaa.2020173 |
[13] |
Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529 |
[14] |
Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025 |
[15] |
Yuezheng Gong, Jiaquan Gao, Yushun Wang. High order Gauss-Seidel schemes for charged particle dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 573-585. doi: 10.3934/dcdsb.2018034 |
[16] |
Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems and Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317 |
[17] |
Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487 |
[18] |
Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial and Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255 |
[19] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[20] |
Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial and Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]