2012, 2(4): 839-853. doi: 10.3934/naco.2012.2.839

Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China, China

Received  December 2011 Revised  August 2012 Published  November 2012

Modified Hermitian and skew-Hermitian splitting (MHSS) method is an unconditionally convergent iterative method for solving large sparse complex symmetric systems of linear equations. By making use of the MHSS iteration as the inner solver for the inexact Newton method, we establish a class of inexact Newton-MHSS methods for solving large sparse systems of nonlinear equations with complex symmetric Jacobian matrices at the solution points. The local and semi-local convergence properties are analyzed under some proper assumptions. Moreover, by introducing a backtracking linear search technique, a kind of global convergence inexact Newton-MHSS methods are also presented and analyzed. Numerical results are given to examine the feasibility and effectiveness of the inexact Newton-MHSS methods.
Citation: Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839
References:
[1]

H. B. An and Z. Z. Bai, A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations,, Appl. Numer. Math., 57 (2007), 235.  doi: 10.1016/j.apnum.2006.02.007.  Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation,, Rev. Mod. Phys., 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[3]

Z. Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems,, Computing, 89 (2010), 171.   Google Scholar

[4]

Z. Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems,, Computing, 87 (2010), 93.  doi: 10.1007/s00607-010-0077-0.  Google Scholar

[5]

Z. Z. Bai, M. Benzi and F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems,, Numer. Algor., 56 (2011), 297.  doi: 10.1007/s11075-010-9441-6.  Google Scholar

[6]

Z. Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,, SIAM J. Matrix Anal. Appl., 24 (2002), 603.  doi: 10.1137/S0895479801395458.  Google Scholar

[7]

Z.-Z. Bai and X.-P. Guo, On Newton-HSS methods for systems of nonlinear equations with positive-definite jacobian matrices,, J. Comput. Math., 28 (2010), 235.   Google Scholar

[8]

Z. Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems,, Appl. Numer. Math., 59 (2009), 2923.  doi: 10.1016/j.apnum.2009.06.005.  Google Scholar

[9]

M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods,, Numer. Math., 76 (1997), 309.  doi: 10.1007/s002110050265.  Google Scholar

[10]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, "Dynamical Systems Approach to Turbulence,", Cambridge University Press, (1998).  doi: 10.1017/CBO9780511599972.  Google Scholar

[11]

R. Dembo, S. Eisenstat and T. Steihaug, Inexact Newton methods,, SIAM J. Numer. Anal., 19 (1982), 400.  doi: 10.1137/0719025.  Google Scholar

[12]

P. Deuflhard, "Newton Methods for Nonlinear Problems,", Springer-Verlag, (2004).   Google Scholar

[13]

S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods,, SIAM J. Optim., 4 (1994), 393.  doi: 10.1137/0804022.  Google Scholar

[14]

S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,, SIAM J. Sci. Comput., 17 (1996), 16.  doi: 10.1137/0917003.  Google Scholar

[15]

X. P. Guo and I. S. Duff, Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations,, Numer. Linear Algebra Appl., 18 (2011), 299.  doi: 10.1002/nla.713.  Google Scholar

[16]

C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations,", SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[17]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Dover Publications, (2003).   Google Scholar

[18]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables,", SIAM, (2000).  doi: 10.1137/1.9780898719468.  Google Scholar

[19]

M. Pernice and H. F. Walker, Nitsol: A newton iterative solver for nonlinear systems,, SIAM J. Sci. Comput., 19 (1998), 302.  doi: 10.1137/S1064827596303843.  Google Scholar

[20]

Y. Saad, "Iterative Methods for Sparse Linear Systems,", 2nd edition, (2003).  doi: 10.1137/1.9780898718003.  Google Scholar

[21]

C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer Verlag, (1999).   Google Scholar

[22]

A. L. Yang, J. An and Y. J. Wu, A generalized preconditioned HSS method for non-Hermitian positive definite linear systems,, Appl. Math. Comput., 216 (2010), 1715.  doi: 10.1016/j.amc.2009.12.032.  Google Scholar

show all references

References:
[1]

H. B. An and Z. Z. Bai, A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations,, Appl. Numer. Math., 57 (2007), 235.  doi: 10.1016/j.apnum.2006.02.007.  Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation,, Rev. Mod. Phys., 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[3]

Z. Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems,, Computing, 89 (2010), 171.   Google Scholar

[4]

Z. Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems,, Computing, 87 (2010), 93.  doi: 10.1007/s00607-010-0077-0.  Google Scholar

[5]

Z. Z. Bai, M. Benzi and F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems,, Numer. Algor., 56 (2011), 297.  doi: 10.1007/s11075-010-9441-6.  Google Scholar

[6]

Z. Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,, SIAM J. Matrix Anal. Appl., 24 (2002), 603.  doi: 10.1137/S0895479801395458.  Google Scholar

[7]

Z.-Z. Bai and X.-P. Guo, On Newton-HSS methods for systems of nonlinear equations with positive-definite jacobian matrices,, J. Comput. Math., 28 (2010), 235.   Google Scholar

[8]

Z. Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems,, Appl. Numer. Math., 59 (2009), 2923.  doi: 10.1016/j.apnum.2009.06.005.  Google Scholar

[9]

M. Benzi and D. B. Szyld, Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods,, Numer. Math., 76 (1997), 309.  doi: 10.1007/s002110050265.  Google Scholar

[10]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, "Dynamical Systems Approach to Turbulence,", Cambridge University Press, (1998).  doi: 10.1017/CBO9780511599972.  Google Scholar

[11]

R. Dembo, S. Eisenstat and T. Steihaug, Inexact Newton methods,, SIAM J. Numer. Anal., 19 (1982), 400.  doi: 10.1137/0719025.  Google Scholar

[12]

P. Deuflhard, "Newton Methods for Nonlinear Problems,", Springer-Verlag, (2004).   Google Scholar

[13]

S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods,, SIAM J. Optim., 4 (1994), 393.  doi: 10.1137/0804022.  Google Scholar

[14]

S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,, SIAM J. Sci. Comput., 17 (1996), 16.  doi: 10.1137/0917003.  Google Scholar

[15]

X. P. Guo and I. S. Duff, Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations,, Numer. Linear Algebra Appl., 18 (2011), 299.  doi: 10.1002/nla.713.  Google Scholar

[16]

C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations,", SIAM, (1995).  doi: 10.1137/1.9781611970944.  Google Scholar

[17]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,", Dover Publications, (2003).   Google Scholar

[18]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables,", SIAM, (2000).  doi: 10.1137/1.9780898719468.  Google Scholar

[19]

M. Pernice and H. F. Walker, Nitsol: A newton iterative solver for nonlinear systems,, SIAM J. Sci. Comput., 19 (1998), 302.  doi: 10.1137/S1064827596303843.  Google Scholar

[20]

Y. Saad, "Iterative Methods for Sparse Linear Systems,", 2nd edition, (2003).  doi: 10.1137/1.9780898718003.  Google Scholar

[21]

C. Sulem and P. L. Sulem, "The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse,", Springer Verlag, (1999).   Google Scholar

[22]

A. L. Yang, J. An and Y. J. Wu, A generalized preconditioned HSS method for non-Hermitian positive definite linear systems,, Appl. Math. Comput., 216 (2010), 1715.  doi: 10.1016/j.amc.2009.12.032.  Google Scholar

[1]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[2]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[3]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[4]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[8]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[9]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[10]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[13]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[14]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[15]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[16]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[17]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

 Impact Factor: 

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]